Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

MOD-1 is a serotonin-gated chloride channel that modulates locomotory behaviour in C. elegans

Abstract

The neurotransmitter and neuromodulator serotonin (5-HT) functions by binding either to metabotropic G-protein-coupled receptors (for example, 5-HT1, 5-HT2, 5-HT4 to 5-HT7), which mediate ‘slow’ modulatory responses through numerous second messenger pathways1, or to the ionotropic 5-HT3 receptor, a non-selective cation channel that mediates ‘fast’ membrane depolarizations2. Here we report that the gene mod-1 (for modulation of locomotion defective) from the nematode Caenorhabditis elegans encodes a new type of ionotropic 5-HT receptor, a 5-HT-gated chloride channel. The predicted MOD-1 protein is similar to members of the nicotinic acetylcholine receptor family of ligand-gated ion channels, in particular to GABA (γ-aminobutyric acid)- and glycine-gated chloride channels. The MOD-1 channel has distinctive ion selectivity and pharmacological properties. The reversal potential of the MOD-1 channel is dependent on the concentration of chloride ions but not of cations. The MOD-1 channel is not blocked by calcium ions or 5-HT3a-specific antagonists but is inhibited by the metabotropic 5-HT receptor antagonists mianserin and methiothepin. mod-1 mutant animals are defective in a 5-HT-mediated experience-dependent behaviour3 and are resistant to exogenous 5-HT, confirming that MOD-1 functions as a 5-HT receptor in vivo.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Phenotypic characterization and cloning of mod-1.
Figure 2: Sequence analysis of mod-1.
Figure 3: mod-1 deletion alleles caused 5-HT resistance and defects in the enhanced slowing response.
Figure 4: MOD-1 is a 5-HT-gated ion channel distinct from the 5-HT3a channel.
Figure 5: MOD-1 is a 5-HT-gated chloride channel.

Similar content being viewed by others

References

  1. Martin, G. R., Eglen, R. M., Hamblin, M. W., Hoyer, D. & Yocca, F. The structure and signalling properties of 5-HT receptors: an endless diversity? Trends Pharmacol. Sci. 19, 2–4 (1998 ).

    Article  CAS  PubMed  Google Scholar 

  2. Maricq, A. V., Peterson, A. S., Brake, A. J., Myers, R. M. & Julius, D. Primary structure and functional expression of the 5HT3 receptor, a serotonin-gated ion channel. Science 254, 432–437 (1991).

    Article  ADS  CAS  PubMed  Google Scholar 

  3. Sawin, E. R., Ranganathan, R. & Horvitz, H. R. C. elegans locomotory rate is modulated by the environment through a dopaminergic pathway and by experience through a serotonergic pathway. Neuron 26, 619– 631 (2000).

    Article  CAS  PubMed  Google Scholar 

  4. Horvitz, H. R., Chalfie, M., Trent, C., Sulston, J. E. & Evans, P. D. Serotonin and octopamine in the nematode Caenorhabditis elegans. Science 216, 1012– 1014 (1982).

    Article  ADS  CAS  PubMed  Google Scholar 

  5. The C. elegans Sequencing Consortium. Genome sequence of the nematode C. elegans: a platform for investigating biology. Science 282, 2012– 2018 (1998).

    Article  ADS  Google Scholar 

  6. Krause, M. & Hirsh, D. A trans-spliced leader sequence on actin mRNA in C. elegans. Cell 49, 753–761 (1987).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Liu, L. X. et al. High-throughput isolation of Caenorhabditis elegans deletion mutants. Genome Res. 9, 859– 867 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Jansen, G., Hazendonk, E., Thijssen, K. L. & Plasterk, R. H. Reverse genetics by chemical mutagenesis in Caenorhabditis elegans. Nature Genet. 17, 119– 121 (1997).

    Article  CAS  PubMed  Google Scholar 

  9. Sumikawa, K. & Gehle, V. M. Assembly of mutant subunits of the nicotinic acetylcholine receptor lacking the conserved disulfide loop structure. J. Biol. Chem. 267, 6286– 6290 (1992).

    CAS  PubMed  Google Scholar 

  10. Karlin, A. & Akabas, M. H. Toward a structural basis for the function of nicotinic acetylcholine receptors and their cousins. Neuron 15, 1231–1244 ( 1995).

    Article  CAS  PubMed  Google Scholar 

  11. Cooper, J. R., Bloom, F. E. & Roth, R. H. The Biochemical Basis of Neuropharmacology (Oxford Univ. Press, New York, 1996).

    Google Scholar 

  12. Hardie, R. C. A histamine-activated chloride channel involved in neurotransmission at a photoreceptor synapse. Nature 339, 704– 706 (1989).

    Article  ADS  CAS  PubMed  Google Scholar 

  13. McClintock, T. S. & Ache, B. W. Histamine directly gates a chloride channel in lobster olfactory receptor neurons. Proc. Natl Acad. Sci. USA 86, 8137– 8141 (1989).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  14. Cully, D. F. et al. Cloning of an avermectin-sensitive glutamate-gated chloride channel from Caenorhabditis elegans. Nature 371, 707–711 (1994).

    Article  ADS  CAS  PubMed  Google Scholar 

  15. Adelsberger, H., Lepier, A. & Dudel, J. Activation of rat recombinant α1β 2γ2S GABAA receptor by the insecticide ivermectin. Eur. J. Pharmacol. 394, 163– 170 (2000).

    Article  CAS  PubMed  Google Scholar 

  16. Krause, R. M. et al. Ivermectin: a positive allosteric effector of the α7 neuronal nicotinic acetylcholine receptor. Mol. Pharmacol. 53, 283–294 (1998).

    Article  CAS  PubMed  Google Scholar 

  17. Davies, P. A. et al. The 5-HT3B subunit is a major determinant of serotonin-receptor function. Nature 397, 359– 363 (1999).

    Article  ADS  CAS  PubMed  Google Scholar 

  18. Downie, D. L. et al. Pharmacological characterization of the apparent splice variants of the murine 5-HT3 R-A subunit expressed in Xenopus laevis oocytes. Neuropharmacology 33, 473– 482 (1994).

    Article  CAS  PubMed  Google Scholar 

  19. Aizenberg, D. et al. Mianserin, a 5-HT2a/2c and alpha 2 antagonist, in the treatment of sexual dysfunction induced by serotonin reuptake inhibitors. Clin. Neuropharmacol. 20, 210–214 (1997).

    Article  CAS  PubMed  Google Scholar 

  20. Granas, C. & Larhammar, D. Identification of an amino acid residue important for binding of methiothepin and sumatriptan to the human 5-HT(1B) receptor. Eur. J. Pharmacol. 380, 171–181 (1999).

    Article  CAS  PubMed  Google Scholar 

  21. Weber, W. Ion currents of Xenopus laevis oocytes: state of the art. Biochim. Biophys. Acta. 1421, 213– 233 (1999).

    Article  CAS  PubMed  Google Scholar 

  22. Bormann, J., Hamill, O. P. & Sakmann, B. Mechanism of anion permeation through channels gated by glycine and gamma-aminobutyric acid in mouse cultured spinal neurones. J. Physiol. (Lond.) 385, 243– 286 (1987).

    Article  CAS  Google Scholar 

  23. Chalfie, M., Tu, Y., Euskirchen, G., Ward, W. W. & Prasher, D. C. Green fluorescent protein as a marker for gene expression. Science 263, 802–805 (1994).

    Article  ADS  CAS  PubMed  Google Scholar 

  24. Shaham, S. & Horvitz, H. R. Developing Caenorhabditis elegans neurons may contain both cell-death protecture and killer activities. Genes Dev. 10, 578–591 (1996).

    Article  CAS  PubMed  Google Scholar 

  25. Lessmann, V. & Dietzel, I. D. Development of serotonin-induced ion currents in identified embryonic Retzius cells from the medicinal leech (Hirudo medicinalis). J. Neurosci. 11, 800–809 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Lessmann, V. & Dietzel, I. D. Two kinetically distinct 5-hydroxytryptamine-activated Cl- conductances at Retzius P-cell synapses of the medicinal leech. J. Neurosci. 15, 1496– 1505 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Brenner, S. The genetics of Caenorhabditis elegans. Genetics 77, 71–94 (1974).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Mello, C. C., Kramer, J. M., Stinchcomb, D. & Ambros, V. Efficient gene transfer in C. elegans: extrachromosomal maintenance and integration of transforming sequences. EMBO J. 10, 3959–3970 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Morrill, J. A. & Cannon, S. C. Effects of mutations causing hypokalaemic periodic paralysis on the skeletal muscle L-type Ca2+ channel expressed in Xenopus laevis oocytes. J. Physiol. (Lond.) 520, 321–336 (1999).

    Article  CAS  Google Scholar 

  30. Hayward, L. J., Brown, R. H. Jr & Cannon, S. C. Inactivation defects caused by myotonia-associated mutations in the sodium channel III-IV linker. J. Gen. Physiol. 107, 559–576 ( 1996).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank N. Buttner, D. Omura and P. Reddien for suggestions concerning this manuscript; G. Moulder and R. Barstead for help in isolating the mod-1(ok103) allele; L. Liu and C. Johnson for sharing the mod-1(nr2043) allele before publication; and D. Julius for the 5-HT3a cDNA clone. This work was supported by a grant from the United States Public Health Service (H.R.H.). R.R. is supported by a Howard Hughes Medical Institute predoctoral fellowship. H.R.H. is an Investigator of the Howard Hughes Medical Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Robert Horvitz.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ranganathan, R., Cannon, S. & Horvitz, H. MOD-1 is a serotonin-gated chloride channel that modulates locomotory behaviour in C. elegans. Nature 408, 470–475 (2000). https://doi.org/10.1038/35044083

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35044083

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing