Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

n-type colloidal semiconductor nanocrystals


Colloidal semiconductor nanocrystals1,2 combine the physical and chemical properties of molecules with the optoelectronic properties of semiconductors. Their colour is highly controllable, a direct consequence of quantum confinement on the electronic states3. Such nanocrystals are a form of ‘artificial atoms’ (ref. 4) that may find applications in optoelectronic systems such as light-emitting diodes5,6 and photovoltaic cells7, or as components of future nanoelectronic devices. The ability to control the electron occupation (especially in n-type or p-type nanocrystals) is important for tailoring the electrical and optical properties, and should lead to a wider range of practical devices. But conventional doping by introducing impurity atoms has been unsuccessful so far: impurities tend to be expelled from the small crystalline cores (as observed for magnetic impurities8), and thermal ionization of the impurities (which provides free carriers) is hindered by strong confinement. Here we report the fabrication of n-type nanocrystals using an electron transfer approach commonly employed in the field of conducting organic polymers9. We find that semiconductor nanocrystals prepared as colloids can be made n-type, with electrons in quantum confined states.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Rent or buy this article

Get just this article for as long as you need it


Prices may be subject to local taxes which are calculated during checkout

Figure 1: Absorption spectra of CdSe nanocrystals.
Figure 2: Infrared absorption spectra of n-type CdSe nanocrystals capped with TOPO.
Figure 3: Experimental 1Se–1Pe transition energy of n-type CdSe nanocrystals.
Figure 4: Infrared absorption spectra of n-type ZnO (4.4 nm), CdS (7 nm) and CdSe (5.4 nm) nanocrystals capped with TOPO.


  1. Nirmal, M. & Brus, L. E. Luminescence photophysics in semiconductor nanocrystals. Acc. Chem. Res. 32, 407– 414 (1999).

    Article  CAS  Google Scholar 

  2. Alivisatos, A. P. Semiconductor clusters, nanocrystals, and quantum dots. Science 271, 933–937 ( 1996).

    Article  ADS  CAS  Google Scholar 

  3. Murray, C. B., Norris, D. J. & Bawendi, M. G. Synthesis and characterization of nearly monodisperse CdE (E = S, Se, Te) semiconductor nanocrystallites. J. Am. Chem. Soc. 115, 8706–8715 ( 1993).

    Article  CAS  Google Scholar 

  4. Ashoori, R. C. Electrons in artificial atoms. Nature 379, 413–419 (1996).

    Article  ADS  CAS  Google Scholar 

  5. Colvin, V. L., Schlamp, M. C. & Alivisatos, A. P. Light-emitting diodes made from cadmium selenide nanocrystals and a semiconducting polymer. Nature 370 , 354–357 (1994).

    Article  ADS  CAS  Google Scholar 

  6. Dabbousi, B. O., Bawendi, M. G., Onitsuka, O. & Rubner, M. F. Electroluminescence from CdSe quantum-dot/polymer composites. Appl. Phys. Lett. 66, 1316–1318 (1995).

    Article  ADS  CAS  Google Scholar 

  7. O'Regan, B. & Grätzel, M. A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 353, 737–740 ( 1991).

    Article  ADS  CAS  Google Scholar 

  8. Mikulec, F. V. et al. Organometallic synthesis and spectroscopic characterization of manganese-doped CdSe nanocrystals. J. Am. Chem. Soc. 122, 2532–2540 (2000).

    Article  CAS  Google Scholar 

  9. Chiang, C. K. et al. Synthesis of highly conducting films of derivatives of polyacetylene, CHx. J. Am. Chem. Soc. 100, 1013 –1015 (1978).

    Article  CAS  Google Scholar 

  10. Kamat, P. V. Interfacial charge transfer processes in colloidal semiconductor systems. Prog. Reaction Kinetics 19, 277– 316 (1994).

    CAS  Google Scholar 

  11. Miller, R. J. D., McLendon, G. L., Nozik, A. J., Schmickler, W. & Willig, F. Surface Electron Transfer Processes (VCH Publishers, New York, 1995).

    Google Scholar 

  12. Haddon, R. C. et al. Conducting films of C60 and C70 by alkali-metal doping. Nature 350, 320– 322 (1991).

    Article  ADS  CAS  Google Scholar 

  13. Lee, R. S., Kim, H. J., Fischer, J. E., Thess, A. & Smalley, R. E. Conductivity enhancement in single-walled carbon nanotube bundles doped with K and Br. Nature 388, 255–257 (1997).

    Article  ADS  CAS  Google Scholar 

  14. Guyot-Sionnest, P. & Hines, M. A. Intraband transitions in semiconductor nanocrystals. Appl. Phys. Lett. 72 , 686–688 (1998).

    Article  ADS  CAS  Google Scholar 

  15. Shim, M., Shilov, S. V., Braiman, M. S. & Guyot-Sionnest, P. Long-lived delocalized electron states in quantum dots: a step-scan Fourier transform infrared study. J. Phys. Chem. 104, 1494–1496 (2000).

    Article  CAS  Google Scholar 

  16. Norris, D. J. & Bawendi, M. G. Measurement and assignment of the size-dependent optical spectrum in CdSe quantum dots. Phys. Rev. B 53, 16338–16346 ( 1996).

    Article  ADS  CAS  Google Scholar 

  17. Shim, M. & Guyot-Sionnest, P. Permanent dipole moment and charges in colloidal semiconductor quantum dots. J. Chem. Phys. 111, 6955–6964 ( 1999).

    Article  ADS  CAS  Google Scholar 

  18. Hoyer, P., Eichberger, R. & Weller, H. Spectroelectrochemical investigations of nanocrystalline ZnO films. Ber. Bunsenges. Phys. Chem. 97, 630–635 (1993).

    Article  CAS  Google Scholar 

  19. Hoyer, P. & Weller, H. Size-dependent redox potentials of quantized zinc oxide measured with an optically transparent thin layer electrode. Chem. Phys. Lett. 221, 379– 384 (1994).

    Article  ADS  CAS  Google Scholar 

  20. Bruchez, M. Jr, Moronne, M., Gin, P., Weiss, S. & Alivisatos, A. P. Semiconductor nanocrystals as fluorescent biological labels. Science 281, 2013– 2016 (1998).

    Article  ADS  CAS  Google Scholar 

  21. Chan, W. C. W. & Nie, S. Quantum dot bioconjugates for ultrasensitive nonisotopic detection. Science 281 , 2016–2018 (1998).

    Article  ADS  CAS  Google Scholar 

Download references


This work was funded by the US NSF. We made use of the Materials Research Science and Engineering Center (MRSEC) shared facilities supported by the US NSF.

Author information

Authors and Affiliations


Corresponding authors

Correspondence to Moonsub Shim or Philippe Guyot-Sionnest.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Shim, M., Guyot-Sionnest, P. n-type colloidal semiconductor nanocrystals. Nature 407, 981–983 (2000).

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI:

This article is cited by


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing