Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Efficient delivery of meteorites to the Earth from a wide range of asteroid parent bodies

Abstract

Almost all meteorites come from asteroids, but identifying their specific parent bodies, and modelling their transport to the Earth, has proved to be difficult1,2. The usual model1,3,4 of delivery through orbital resonances with the major planets5,6 has recently been shown7,8,9,10 to deplete the supply of meteorites much too rapidly to explain either the observed flux at the Earth, or the length of time the meteorites have spent in space (as measured by cosmic-ray exposure ages). Independently, it has been found that a force arising from anisotropically emitted thermal radiation from asteroidal fragments (the ‘Yarkovsky effect’) influences the fragments' orbits in important ways11,12,13,14. Here we report the results of a detailed model for the transport of meteorites to the Earth, which includes the Yarkovsky effect and collisional evolution of the asteroidal fragments. We find that the Yarkovsky effect significantly increases the efficiency of the delivery of meteorites to the Earth, while at the same time allowing a much wider range of asteroids to contribute to the flux of meteorites. Our model also reproduces the observed distribution15,16 of cosmic-ray exposure ages of stony meteorites.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The expected flux of fragments from Hebe (for K = 0.1 W m-1 K-1) versus time.
Figure 2: Comparison of the modelled and observed cosmic-ray exposure (CRE) age distributions for three different meteorite types.

Similar content being viewed by others

References

  1. Farinella, P., Gonczi, R., Froeschlé, Ch. & Froeschlé, C. The injection of asteroid fragments into resonances. Icarus 101, 174–187 (1993).

    Article  ADS  Google Scholar 

  2. Wetherill, G. W. & Chapman, C. R. in Meteorites and the Early Solar System (eds Kerridge, J. F. & Matthews, M. S.) 35–67 (Univ. of Arizona Press, Tucson, 1988).

    Google Scholar 

  3. Greenberg, R. & Chapman, C. R. Asteroids and meteorites—Parent bodies and delivered samples. Icarus 55, 455–481 (1983).

    Article  ADS  CAS  Google Scholar 

  4. Wetherill, G. W. Asteroidal source of ordinary chondrites. Meteoritics 20, 1–22 (1985).

    Article  ADS  Google Scholar 

  5. Wisdom, J. Meteorites may follow a chaotic route to Earth. Nature 315, 731–733 (1985).

    Article  ADS  Google Scholar 

  6. Scholl, H. & Froeschlé, Ch. The ν6 secular resonance region near 2 AU: A possible source of meteorites. Astron. Astrophys. 245, 316–321 (1991).

    ADS  Google Scholar 

  7. Farinella, P. et al. Asteroids falling into the Sun. Nature 371, 314–317 (1994).

    Article  ADS  Google Scholar 

  8. Migliorini, F. et al. Vesta fragments from ν6 and 3:1 resonances: Implications for V-type NEAs and HED meteorites. Meteor. Planet. Sci. 32, 903–916 ( 1997).

    Article  ADS  CAS  Google Scholar 

  9. Gladman, B. J. et al. Dynamical lifetimes of objects injected into asteroid belt resonances. Science 277, 197– 201 (1997).

    Article  ADS  CAS  Google Scholar 

  10. Morbidelli, A. & Gladman, B. Orbital and temporal distributions of meteorites originating in the asteroid belt. Meteor. Planet. Sci. 33, 999–1016 (1998).

    Article  ADS  CAS  Google Scholar 

  11. Farinella, P., Vokrouhlický, D. & Hartmann, W. K. Meteorite delivery via Yarkovsky orbital drift. Icarus 132, 378– 387 (1998).

    Article  ADS  CAS  Google Scholar 

  12. Hartmann, W. K. et al. Reviewing the Yarkovsky effect: New light on the delivery of stones and irons from the asteroid belt. Meteor. Planet. Sci. 34, A161–A168 ( 1999).

    Article  ADS  Google Scholar 

  13. Bottke, W. F., Rubincam, D. P. & Burns, J. A. Dynamical evolution of main belt meteoroids: Numerical simulations incorporating planetary perturbations and Yarkovsky thermal forces. Icarus 145, 301–331 (2000).

    Article  ADS  Google Scholar 

  14. Vokrouhlický, D. A complete linear model for the Yarkovsky thermal force on spherical asteroid fragments. Astron. Astrophys. 344, 362– 366 (1999).

    ADS  Google Scholar 

  15. Marti, K. & Graf, T. Cosmic-ray exposure history of ordinary chondrites. Annu. Rev. Earth Planet. Sci. 20, 221–243 (1992).

    Article  ADS  CAS  Google Scholar 

  16. Welten, K. C. et al. Cosmic-ray exposure ages of diogenites and the recent collisional history of the HED parent body/bodies. Meteor. Planet. Sci. 32, 891–902 (1997).

    Article  ADS  CAS  Google Scholar 

  17. Farinella, P. & Vokrouhlický, D. Semimajor axis mobility of asteroidal fragments. Science 283, 1507 –1510 (1999).

    Article  ADS  CAS  Google Scholar 

  18. Vokrouhlický, D., Milani, A. & Chesley, S. R. Yarkovsky effect on small near-Earth asteroids: Mathematical formulation and examples. Icarus (in the press).

  19. Migliorini, F. et al. Surface properties of (6) Hebe: A possible parent body of ordinary chondrites. Icarus 128, 104– 113 (1997).

    Article  ADS  Google Scholar 

  20. Gaffey, M. J. & Gilbert, S. L. Asteroid 6 Hebe: The probable parent body of the H-type ordinary chondrites and the IIE iron meteorites. Meteor. Planet. Sci. 33, 1281– 1295 (1998).

    Article  ADS  CAS  Google Scholar 

  21. Presley, M. A. & Christensen, P. R. Thermal conductivity measurements of particulate materials. J. Geophys. Res. 102, 6535–6550 ( 1997).

    Article  ADS  CAS  Google Scholar 

  22. Yomogida, K. & Matsui, T. Physical properties of ordinary chondrites. J. Geophys. Res. 88, 9513– 9533 (1983).

    Article  ADS  CAS  Google Scholar 

  23. Gladman, B., Michel, P. & Froeschlé, Ch. The near-Earth object population. Icarus 146, 176–189 ( 2000).

    Article  ADS  Google Scholar 

  24. Haack, H., Farinella, P., Scott, E. R. D. & Keil, K. Meteoritic, asteroidal and theoretical constraints on the 500 Ma disruption of the L chondrite parent body. Icarus 119, 182–191 (1996).

    Article  ADS  Google Scholar 

  25. Schmitz, B., Peucker-Ehrenbrink, B., Lindström, M. & Tassinari, M. Accretion rates of meteorites and cosmic dust in the early Ordovician. Science 278, 88–90 ( 1997).

    Article  ADS  CAS  Google Scholar 

  26. Wetherill, G. W. Multiple cosmic-ray exposure ages of meteorites. Meteoritics 15, 386–387 (1980).

    ADS  Google Scholar 

  27. Herzog, G. F. et al. Complex exposure histories for meteorites with “short” exposure ages. Meteor. Planet. Sci. 32, 413–422 (1997).

    Article  ADS  CAS  Google Scholar 

  28. Graf, T. & Marti, K. Collisional history of H chondrites. J. Geophys. Res. 100, 21247– 21263 (1995).

    Article  ADS  Google Scholar 

  29. Binzel, R. P. & Xu, S. Chips off of asteroid 4 Vesta—Evidence for the parent body of basaltic achondrite meteorites. Science 260, 186–191 ( 1993).

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

This Letter is dedicated to the memory of P.F., who passed away on 25 March 2000. Our understanding of the role of the Yarkovsky effect in the history of the Solar System is only one of many contributions by P.F. to modern planetology. We thank J. A. Burns and C. R. Chapman for comments on the manuscript.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vokrouhlický, D., Farinella, P. Efficient delivery of meteorites to the Earth from a wide range of asteroid parent bodies. Nature 407, 606–608 (2000). https://doi.org/10.1038/35036528

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35036528

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing