Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Cortex-restricted disruption of NMDAR1 impairs neuronal patterns in the barrel cortex

Abstract

In the rodent primary somatosensory cortex, the configuration of whiskers and sinus hairs on the snout and of receptor-dense zones on the paws is topographically represented as discrete modules of layer IV granule cells (barrels) and thalamocortical afferent terminals1,2. The role of neural activity, particularly activity mediated by NMDARs (N-methyl-d-aspartate receptors), in patterning of the somatosensory cortex has been a subject of debate3,4,5,6. We have generated mice in which deletion of the NMDAR1 (NR1) gene is restricted to excitatory cortical neurons, and here we show that sensory periphery-related patterns develop normally in the brainstem and thalamic somatosensory relay stations of these mice. In the somatosensory cortex, thalamocortical afferents corresponding to large whiskers form patterns and display critical period plasticity, but their patterning is not as distinct as that seen in the cortex of normal mice. Other thalamocortical patterns corresponding to sinus hairs and digits are mostly absent. The cellular aggregates known as barrels and barrel boundaries do not develop even at sites where thalamocortical afferents cluster. Our findings indicate that cortical NMDARs are essential for the aggregation of layer IV cells into barrels and for development of the full complement of thalamocortical patterns.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Generation of Emx1-Cre mice and their cortex-restricted recombination.
Figure 2: Cortex-restricted NR1 disruption in CxNR1KO mice.
Figure 3: Lack of NMDAR-mediated excitation in barrel cortex of CxNR1KO mice.
Figure 4: Whisker-related patterns as revealed by cytochrome oxidase histochemistry.
Figure 5: Partial thalamocortical axonal patterns, absence of barrels and barrel boundaries.

Similar content being viewed by others

References

  1. Woolsey, T. A. & Van der Loos, H. The structural organization of layer IV in the somatosensory region (SI) of the mouse cerebral cortex. Brain Res. 17, 205–242 (1970).

    Article  CAS  Google Scholar 

  2. O'Leary, D. D. M., Ruff, N. L. & Dyck, R. H. Development, critical period plasticity, and adult reorganizations of mammalian somatosensory systems. Curr. Biol. 4, 535–544 (1994).

    CAS  Google Scholar 

  3. Chiaia, N. L., Fish, S. E., Bauer, W. R., Bennett-Clarke, C. A. & Rhoades, R. W. Postnatal blockade of cortical activity by tetrodotoxin does not disrupt the formation of vibrissa-related patterns in the rat's somatosensory cortex. Dev. Brain Res. 66, 244–250 (1992).

    Article  CAS  Google Scholar 

  4. Schlaggar, B. L., Fox, K. & O'Leary, D. D. M. Postsynaptic control of plasticity in developing somatosensory cortex. Nature 364, 623– 626 (1993).

    Article  ADS  CAS  Google Scholar 

  5. Fox, K., Schlaggar, B. L., Glazewski, S. & O'Leary, D. D. M. Glutamate receptor blockade at cortical synapses disrupts development of thalamocortical and columnar organization in somatosensory cortex. Proc. Natl Acad. Sci. USA 93, 5584–5589 ( 1996).

    Article  ADS  CAS  Google Scholar 

  6. Iwasato, T. et al. NMDA receptor-dependent refinement of somatotopic maps. Neuron 19, 1201–1210 ( 1997).

    Article  CAS  Google Scholar 

  7. Woolsey, T. A. in Development of Sensory Systems in Mammals, (ed. Coleman, E. J.) 461–516 (Wiley, New York, 1990).

    Google Scholar 

  8. Jhaveri, S. & Erzurumlu, R. S. in Development of the Central Nervous System in Vertebrates (eds Sharma, S. C. & Goffinet, A. M.) 167–178 (Plenum, New York, 1992).

    Book  Google Scholar 

  9. Constantine-Paton, M., Cline, H. T. & Debski, E. Patterned activity, synaptic convergence, and the NMDA receptor in developing visual pathways. Annu. Rev. Neurosci. 13, 129–154 (1990).

    Article  CAS  Google Scholar 

  10. Goodman, C. S. & Shatz, C. J. Developmental mechanisms that generate precise patterns of neuronal connectivity. Cell 72 (Suppl.), 77–98 (1993).

    Article  Google Scholar 

  11. Cramer, K. S. & Sur, M. Activity-dependent remodeling of connections in the mammalian visual system. Curr. Opin. Neurobiol. 5, 106–111 (1995).

    Article  CAS  Google Scholar 

  12. Li, Y., Erzurumlu, R. S., Chen, C., Jhaveri, S. & Tonegawa, S. Whisker-related neuronal patterns fail to develop in the trigeminal brainstem nuclei of NMDAR1 knockout mice. Cell 76, 427–437 (1994).

    Article  CAS  Google Scholar 

  13. Kutsuwada, T. et al. Impairment of sucking response, trigeminal neuronal pattern formation, and hippocampal LTD in NMDA receptor ε2 subunit mutant mice. Neuron 16, 333–344 (1996).

    Article  CAS  Google Scholar 

  14. Tsien, J. Z., Huerta, P. T. & Tonegawa, S. The essential role of hippocampal CA1 NMDA receptor-dependent synaptic plasticity in spatial memory. Cell 87, 1327–1338 (1996).

    Article  CAS  Google Scholar 

  15. Gulisano, M., Broccoli, V., Pardini, C. & Boncinelli, E. Emx1 and Emx2 show different patterns of expression during proliferation and differentiation of the developing cerebral cortex in the mouse. Eur. J. Neurosci. 8, 1037–1050 (1996).

    Article  CAS  Google Scholar 

  16. Yoshida, M. et al. Emx1 and Emx2 functions in development of dorsal telencephalon. Development 124, 101– 111 (1997).

    Article  CAS  Google Scholar 

  17. Sakai, K. & Miyazaki, J.-I. A transgenic mouse line that retains Cre recombinase activity in mature oocytes irrespective of the cre transgene transmission. Biochem. Biophys. Res. Commun. 237, 318–324 (1997).

    Article  CAS  Google Scholar 

  18. Erzurumlu, R. S. & Jhaveri, S. Thalamic axons confer a blueprint of the sensory periphery onto the developing rat somatosensory cortex. Dev. Brain Res. 56, 229– 234 (1990).

    Article  CAS  Google Scholar 

  19. Ottersen, O. P. & Storm-Mathisen, J. Glutamate- and GABA-containing neurons in the mouse and rat brain, as demonstrated with a new immunocytochemical technique. J. Comp. Neurol. 229, 374–392 (1984).

    Article  CAS  Google Scholar 

  20. Parnavelas, J. G. The origin and migration of cortical neurons: new vistas. Trends Neurosci. 23, 126–131 ( 2000).

    Article  CAS  Google Scholar 

  21. Tanifuji, M., Yamanaka, A., Sunaba, R., Terakawa, S. & Toyama, K. Optical responses evoked by white matter stimulation in rat visual cortical slices and their relation to neural activities. Brain Res. 738, 83–95 ( 1996).

    Article  CAS  Google Scholar 

  22. Feldmeyer, D., Egger, V., Lubke, J. & Sakmann, B. Reliable synaptic connections between pairs of excitatory layer 4 neurons within a single ‘barrel’ of developing rat somatosensory cortex. J. Physiol. (Lond.) 521, 169–190 (1999).

    Article  CAS  Google Scholar 

  23. Wong-Riley, M. T. & Welt, C. Histochemical changes in cytochrome oxidase of cortical barrels after vibrissal removal in neonatal and adult mice. Proc. Natl Acad. Sci. USA 77, 2333–2337 (1980).

    Article  ADS  CAS  Google Scholar 

  24. Cases, O. et al. Lack of barrels in the somatosensory cortex of monoamine oxidase A-deficient mice: Role of a serotonin excess during the critical period. Neuron 16, 297–307 ( 1996).

    Article  CAS  Google Scholar 

  25. Jhaveri, S., Erzurumlu, R. S. & Crossin, K. Barrel construction in rodent neocortex: Role of thalamic afferents versus extracellular matrix molecules. Proc. Natl Acad. Sci. USA 88, 4489-4493 (1991).

    Article  ADS  Google Scholar 

  26. Messersmith, E. K., Feller, M. B., Zhang, H. & Shatz, C. J. Migration of neocortical neurons in the absence of functional NMDA receptors. Mol. Cell Neurosci. 9, 347–357. (1997).

    Article  CAS  Google Scholar 

  27. Harris, R. M. & Woolsey, T. A. Dendritic plasticity in mouse barrel cortex following postnatal vibrissa follicle damage. J. Comp. Neurol. 196, 357–376 (1981).

    Article  CAS  Google Scholar 

  28. Katz, L. C. & Constantine-Paton, M. Relationship between segregated afferents and postsynaptic neurons in the optic tectum of three-eyed frogs. J. Neurosci. 8, 3160–3180 (1988).

    Article  CAS  Google Scholar 

  29. Rajan, I. & Cline, H. T. Glutamate receptor activity is required for normal development of tectal cell dendrites in vivo. J. Neurosci. 18, 7836–7846 (1998).

    Article  CAS  Google Scholar 

  30. Molnar, Z. & Hannan, A. J. in Mouse Brain Development (eds Goffinet, A. M. & Rakic, P.) 293–332 (Springer, Berlin, 2000).

    Book  Google Scholar 

Download references

Acknowledgements

We thank D. Gerber for critical reading; M. Yoshida and S. Aizawa for information and a probe of Emx1 gene; J. Tsien, Y. Li, J.-i. Miyazaki and A. Nagy for NR1flox/flox, NR1+/-, CAG-CAT-Z and CMV-Cre mice, respectively; C. Lovett for Cre/LacZ PCR primers; K. Crossin for tenascin antibody; M. Tanaka, H. Gomi, A. Kato, K. Ishii, T. Ikeda and H. Kanki for advice in experiments/manuscript preparation; T. A. Woolsey for helpful discussion; and N. Yoshida, Y. Onodera, R. Ando and R. Nomura for technical assistance. This work was supported by Grant-in-Aid for Scientific Research from the Ministry of Education, Science, Sports and Culture of Japan (T.I.), by the Whitehall Foundation and the NIH/NINDS (R.S.E.) and by the NIH (S.T.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shigeyoshi Itohara.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Iwasato, T., Datwani, A., Wolf, A. et al. Cortex-restricted disruption of NMDAR1 impairs neuronal patterns in the barrel cortex. Nature 406, 726–731 (2000). https://doi.org/10.1038/35021059

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35021059

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing