Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Marine control of biological production in the eastern equatorial Pacific Ocean

Abstract

The eastern equatorial Pacific Ocean is the site of approximately 20–50% of new biological production in the global oceans1. This region is also responsible for the greatest efflux of CO2 from oceans to the atmosphere2. New production, which fixes carbon in response to external inputs of nutrients as opposed to supply from local nutrient recycling, is thought to modulate the CO2 release3. But what controls new production in this region is less clear. Here we present a quantitative reconstruction of biological production in the surface ocean for this region over the past 130,000 years, which shows that the equatorial Pacific Ocean exhibits higher-frequency variations than the South Equatorial Current. Comparison of these records with palaeotemperature reconstructions indicates that atmospherically driven mechanisms—such as aeolian flux of iron or wind-driven changes in upwelling rate of nutrient-rich waters—are unlikely to have influenced longer-term rates of production in this region. Instead, biological production appears to be governed by changes in ocean circulation and the chemical composition of upwelled water.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The eastern equatorial Pacific Ocean, showing the locations of the cores examined.
Figure 2: Palaeoproductivity and palaeotemperature records from the eastern equatorial Pacific Ocean.

Similar content being viewed by others

References

  1. Barber, R. & Chavez, R. Regulation of primary productivity rate in the equatorial Pacific. Limnol. Oceanogr. 36 , 1803–1815 (1991).

    Article  ADS  Google Scholar 

  2. Tans, P., Fung, I. & Takahashi, T. Observational constraints on the global atmosphere CO 2 budget. Science 247, 1431– 1438 (1990).

    Article  ADS  CAS  Google Scholar 

  3. Murray, J., Barber, R., Roman, M., Bacon, M. & Feely, R. Physical and biological controls on the carbon cycling in the equatorial Pacific. Science 266, 58–65 (1994).

    Article  ADS  CAS  Google Scholar 

  4. Toggweiler, J., Dixon, D. & Broecker, W. The Peru upwelling and the ventilation of the South Pacific thermocline. J. Geophys. Res. 96, 20467–20497 (1991).

    Article  ADS  CAS  Google Scholar 

  5. Pisias, N., Mix, A. & Zahn, R. Non-linear response in the global climate system: evidence from benthic oxygen isotope record in core RC13-110. Paleoceanography 5 , 147–160 (1990).

    Article  ADS  Google Scholar 

  6. Mix, A. & Shackleton, N. Benthic foraminiferal stable isotope stratigraphy of site 846: 0-1.8 M.A. Proc. ODP Sci. Res. 138, 839–854 ( 1995).

    Google Scholar 

  7. Ninkovitch, D. & Shackleton, N. Distribution, stratigraphic position and age of ash layer ‘L’ in the Panama Basin region. Earth Planet. Sci. Lett. 27, 20–34 (1975).

    Article  ADS  Google Scholar 

  8. Loubere, P. & Fariduddin, M. Quantitative estimation of global patterns of surface ocean biological productivity and its seasonal variation on timescales from centuries to millennia. Glob. Biogeochem. Cycles 13, 115–133 ( 1999).

    Article  ADS  CAS  Google Scholar 

  9. Lampitt, R. & Antia, A. Particle flux in the deep seas: regional characteristics and temporal variability. Deep Sea Res. 44, 1377–1403 (1997).

    Article  CAS  Google Scholar 

  10. Loubere, P. The surface ocean productivity and bottom water oxygen signals in deep water benthic foraminiferal assemblages. Mar. Micropaleontol. 28, 247–262 (1996).

    Article  ADS  Google Scholar 

  11. Fariduddin, M. & Loubere, P. The surface ocean productivity response of deeper water benthic foraminifera in the Atlantic Ocean. Mar. Micropaleontol. 32, 289– 310 (1997).

    Article  ADS  Google Scholar 

  12. Loubere, P. A multiproxy reconstruction of biological productivity and oceanography in the eastern equatorial Pacific for the past 30,000 years. Mar. Micropaleontol. 37, 173–198 (1999).

    Article  ADS  Google Scholar 

  13. Lyle, M. et al. The record of Late Pleistocene biogenic sedimentation in the eastern tropical Pacific Ocean. Paleoceanography. 3 , 39–59 (1988).

    Article  ADS  Google Scholar 

  14. Pisias, N. & Mix, A. Spatial and temporal oceanographic variability of the eastern equatorial Pacific during the late Pleistocene: evidence from radiolarian microfossils. Paleoceanography 12, 381–394 (1997).

    Article  ADS  Google Scholar 

  15. Martin, J. Glacial-interglacial CO2 change: the iron hypothesis. Paleoceanography 5, 1–13 (1990).

    Article  ADS  Google Scholar 

  16. Kutzbach, J. et al. Climate and biome simulations for the past 21,000 years. Quat. Sci. Rev. 17, 473–506 (1998).

    Article  ADS  Google Scholar 

  17. Rea, D. The paleoclimatic record provided by aeolian deposition in the deep sea: the geologic history of wind. Rev. Geophys. 32, 159– 195 (1994).

    Article  ADS  Google Scholar 

  18. Mix, A. & Morey, A. in The South Atlantic: Present and Past Circulation (eds Wefer, G. et al.) 503– 525 (Springer, Berlin, 1996).

    Book  Google Scholar 

  19. Liu, Z. et al. Dynamic and observational constraints on the tropical Pacific Ocean at the last glacial maximum. Geophys. Res. Lett. 27 , 105–108 (2000).

    Article  ADS  Google Scholar 

  20. Francois, R. et al. Contribution of Southern Ocean surface water stratification to low atmospheric CO2 concentrations during the last glacial period. Nature 389, 929–935 (1997).

    Article  ADS  CAS  Google Scholar 

  21. Toggweiler, J. & Carson, S. in Upwelling in the Ocean: Modern Processes and Ancient Records (eds Summerhayes, C. et al.) 337–359 (Wiley and Sons, New York, 1995).

    Google Scholar 

  22. Barber, R. et al. Primary productivity and its regulation in the equatorial Pacific during and following the 1991–1992 El Nino. Deep Sea Res. II 43, 933–969 (1996).

    Article  ADS  CAS  Google Scholar 

  23. Fitzwater, S., Coale, K., Gordon, R., Johnson, K. & Ondrusek, M. Iron deficiency and phytoplankton growth in the equatorial Pacific. Deep Sea Res. II 43, 995– 1015 (1996).

    Article  ADS  CAS  Google Scholar 

  24. Farrell, J., Pedersen, T., Calvert, S. & Nielsen, B. Glacial-interglacial changes in nutrient utilization in the equatorial Pacific Ocean. Nature 377, 514– 517 (1995).

    Article  ADS  CAS  Google Scholar 

  25. Dugdale, R. & Wilkerson, F. Silicate regulation of new production in the equatorial Pacific upwelling. Nature 391, 270–273 (1998).

    Article  ADS  CAS  Google Scholar 

  26. Berger, W. & Lange, C. Silica depletion in the thermocline of the glacial North Pacific: corollaries and implications. Deep Sea Res. II 45, 1885–1904 (1998).

    Article  ADS  CAS  Google Scholar 

  27. Loubere, P. Quantitative estimation of surface ocean productivity and bottom water oxygen concentration using benthic foraminifera. Paleoceanography 9, 723–737 (1994).

    Article  ADS  Google Scholar 

  28. Loubere, P. The impact of seasonality on the benthos as reflected in the assemblages of deep-sea foraminifera. Deep Sea Res. I 45, 409–432 (1998).

    Article  Google Scholar 

  29. Berger, W. in Productivity of the Ocean: Present and Past (eds Berger, W., Smetacek, V. & Wefer, G.) 429–455 (Wiley, New York, 1989).

    Google Scholar 

  30. Antoine, D., Jean-Michel, A. & Morel, A. Oceanic primary production. 2. Estimation at global scale from satellite (coastal zone color scanner) chlorophyll. Glob. Biogeochem. Cycles 10, 57–69 (1996).

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

We thank M. Fariduddin and Q. Hui for helping to generate the benthic count data. This work was supported by the NSF.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul Loubere.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Loubere, P. Marine control of biological production in the eastern equatorial Pacific Ocean. Nature 406, 497–500 (2000). https://doi.org/10.1038/35020041

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35020041

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing