Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

A sphingosine-1-phosphate receptor regulates cell migration during vertebrate heart development

Abstract

Coordinated cell migration is essential in many fundamental biological processes including embryonic development, organogenesis, wound healing and the immune response. During organogenesis, groups of cells are directed to specific locations within the embryo. Here we show that the zebrafish miles apart (mil) mutation1,2 specifically affects the migration of the heart precursors to the midline. We found that mutant cells transplanted into a wild-type embryo migrate normally and that wild-type cells in a mutant embryo fail to migrate, suggesting that mil may be involved in generating an environment permissive for migration. We isolated mil by positional cloning and show that it encodes a member of the lysosphingolipid G-protein-coupled receptor family. We also show that sphingosine-1-phosphate is a ligand for Mil, and that it activates several downstream signalling events that are not activated by the mutant alleles. These data reveal a new role for lysosphingolipids in regulating cell migration during vertebrate development and provide the first molecular clues into the fusion of the bilateral heart primordia during organogenesis of the heart.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: mil phenotype.
Figure 2: S1P-induced intracellular Ca2+ mobilization (a) and MAP kinase activation (b) requires functional Mil receptors.
Figure 3: mil rescue and expression.

Similar content being viewed by others

References

  1. Chen, J. N. et al. Mutations affecting the cardiovascular system and other internal organs in zebrafish. Development 123, 293 –302 (1996).

    CAS  PubMed  Google Scholar 

  2. Stainier, D. Y. R. et al. Mutations affecting the formation and function of the cardiovascular system in the zebrafish embryo. Development 123, 285–92 (1996).

    CAS  PubMed  Google Scholar 

  3. Yelon, D. et al. The bHLH transcription factor Hand2 plays parallel roles in zebrafish heart and pectoral fin development. Development 127 , 2573–2582 (2000).

    CAS  PubMed  Google Scholar 

  4. Yelon, D., Horne, S. & Stainier, D. Y. R. Restricted expression of cardiac myosin genes reveals regulated aspects of heart tube assembly in zebrafish. Dev. Biol. 214, 23–37 ( 1999).

    Article  CAS  Google Scholar 

  5. Kikuchi, Y. et al. The zebrafish bonnie and clyde gene encodes a Mix family homeodomain protein that regulates the generation of endodermal precursors. Genes Dev. 14, 1279–1289 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Reiter, J. F. et al. Gata5 is required for the development of the heart and endoderm in zebrafish. Genes Dev. 13, 2983– 2995 (1999).

    Article  CAS  Google Scholar 

  7. Schier, A. F., Neuhauss, S. C., Helde, K. A., Talbot, W. S. & Driever, W. The one-eyed pinhead gene functions in mesoderm and endoderm formation in zebrafish and interacts with no tail. Development 124, 327– 342 (1997).

    CAS  PubMed  Google Scholar 

  8. Alexander, J., Rothenberg, M., Henry, G. L. & Stainier, D. Y. R. casanova plays an early and essential role in endoderm formation in zebrafish. Dev. Biol. 215, 343–357 (1999).

    Article  CAS  Google Scholar 

  9. Alexander, J. & Stainier, D. Y. R. Mutations affecting cardiac development in zebrafish (eds. Harvey, R. & Rosenthal, N.) (Academic, San Diego, 1999).

    Book  Google Scholar 

  10. Strähle, U., Blader, P., Henrique, D. & Ingham, P. W. axial, a zebrafish gene expressed along the developing body axis, shows altered expression in cyclops mutant embryos. Genes Dev. 7, 1436–1446 (1993).

    Article  Google Scholar 

  11. Knapik, E. W. et al. A microsatellite genetic linkage map for zebrafish (Danio rerio). Nature Genet. 18, 338– 343 (1998).

    Article  CAS  Google Scholar 

  12. Chan, F. Y. et al. Characterization of adult alpha- and beta-globin genes in the zebrafish. Blood 89, 688– 700 (1997).

    CAS  PubMed  Google Scholar 

  13. Martin, C. C., Laforest, L., Akimenko, M. A. & Ekker, M. A role for DNA methylation in gastrulation and somite patterning. Dev. Biol. 206, 189–205 (1999).

    Article  CAS  Google Scholar 

  14. Okazaki, H. et al. Molecular cloning of a novel putative G protein-coupled receptor expressed in the cardiovascular system. Biochem. Biophys. Res. Commun. 190, 1104–1109 ( 1993).

    Article  CAS  Google Scholar 

  15. An, S. et al. Identification of cDNAs encoding two G protein-coupled receptors for lysosphingolipids. FEBS Lett. 417, 279 –282 (1997).

    Article  CAS  Google Scholar 

  16. MacLennan, A. J., Browe, C. S., Gaskin, A. A., Lado, D. C. & Shaw, G. Cloning and characterization of a putative G-protein coupled receptor potentially involved in development. Mol. Cell. Neurosci. 5, 201–209 (1994).

    Article  CAS  Google Scholar 

  17. An, S., Bleu, T. & Zheng, Y. Transduction of intracellular calcium signals through G protein-mediated activation of phospholipase C by recombinant sphingosine 1-phosphate receptors. Mol. Pharmacol. 55, 787–794 (1999).

    CAS  PubMed  Google Scholar 

  18. Goetzl, E. J. & An, S. Diversity of cellular receptors and functions for the lysophospholipid growth factors lysophosphatidic acid and sphingosine 1-phosphate. FASEB J. 12, 1589– 1598 (1998).

    Article  CAS  Google Scholar 

  19. An, S., Zheng, Y. & Bleu, T. Sphingosine 1-phosphate-induced cell proliferation, survival, and related signaling events mediated by G protein-coupled receptors Edg3 and Edg5. J. Biol. Chem. 275, 288–296 (2000).

    Article  CAS  Google Scholar 

  20. Lee, M. J. et al. Sphingosine-1-phosphate as a ligand for the G protein-coupled receptor EDG-1. Science 279, 1552– 1555 (1998).

    Article  ADS  CAS  Google Scholar 

  21. Forbes, A. & Lehmann, R. Cell migration in Drosophila . Curr. Opin. Genet. Dev. 9, 473– 478 (1999).

    Article  CAS  Google Scholar 

  22. Zhang, N., Zhang, J., Purcell, K. J., Cheng, Y. & Howard, K. The Drosophila protein Wunen repels migrating germ cells. Nature 385, 64–67 (1997).

    Article  ADS  CAS  Google Scholar 

  23. Roberts, R., Sciorra, V. A. & Morris, A. J. Human type 2 phosphatidic acid phosphohydrolases. Substrate specificity of the type 2a, 2b, and 2c enzymes and cell surface activity of the 2a isoform. J. Biol. Chem. 273 , 22059–22067 (1998).

    Article  CAS  Google Scholar 

  24. Scheer, A. et al. Mutational analysis of the highly conserved arginine within the glu/asp-arg-tyr motif of the α1b-adrenergic receptor: effects on receptor isomerization and activation. Mol. Pharmacol. 57, 219—231 (2000).

    Google Scholar 

  25. Strader, C. D., Fong, T. M., Tota, M. R., Underwood, D. & Dixon, R. A. Structure and function of G protein-coupled receptors. Annu. Rev. Biochem. 63, 101– 132 (1994).

    Article  CAS  Google Scholar 

  26. Hla, T. et al. Sphingosine-1-phosphate: extracellular mediator or intracellular second messenger? Biochem. Pharmacol. 58, 201–207 (1999).

    Article  CAS  Google Scholar 

  27. Spiegel, S. Sphingosine 1-phosphate: a prototype of a new class of second messengers. J. Leukocyte Biol. 65, 341– 344 (1999).

    Article  CAS  Google Scholar 

  28. Moolenaar, W. H. Bioactive lysophospholipids and their G protein-coupled receptors. Exp. Cell Res. 253, 230–238 (1999).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank I. Herskowitz, H. Bourne, C. Bargmann, R. Lehmann and members of the lab for discussions and comments on the manuscript. We are also grateful to A. Navarro for excellent fish care. E.K. is supported by the University of California President's postdoctoral fellowship program. This work was supported in part by the Program in Human Genetics Genomics Core Facility at UCSF as well as by grants to D.Y.R.S. from the American Heart Association and the Packard Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Didier Y. R. Stainier.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kupperman, E., An, S., Osborne, N. et al. A sphingosine-1-phosphate receptor regulates cell migration during vertebrate heart development. Nature 406, 192–195 (2000). https://doi.org/10.1038/35018092

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35018092

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing