Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

The plastic deformation of iron at pressures of the Earth's inner core

Abstract

Soon after the discovery of seismic anisotropy in the Earth's inner core1, it was suggested that crystal alignment attained during deformation might be responsible2. Since then, several other mechanisms have been proposed to account for the observed anisotropy3,4, but the lack of deformation experiments performed at the extreme pressure conditions corresponding to the solid inner core has limited our ability to determine which deformation mechanism applies to this region of the Earth5. Here we determine directly the elastic and plastic deformation mechanism of iron at pressures of the Earth's core, from synchrotron X-ray diffraction measurements of iron, under imposed axial stress, in diamond-anvil cells. The ε-iron (hexagonally close packed) crystals display strong preferred orientation, with c-axes parallel to the axis of the diamond-anvil cell. Polycrystal plasticity theory predicts an alignment of c-axes parallel to the compression direction as a result of basal slip, if basal slip is either the primary or a secondary slip system. The experiments provide direct observations of deformation mechanisms that occur in the Earth's inner core, and introduce a method for investigating, within the laboratory, the rheology of materials at extreme pressures.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Experimental set-up.
Figure 2: X-ray diffraction spectra of ε-iron recorded at 220 GPa and 300 K for different rotation angles, χ.
Figure 3: Inverse pole figures illustrating preferred orientation patterns of ε-iron deformed in axial compression.
Figure 4: Calculated activities of basal and prismatic slip in ε-iron as a function of compressive strain.

Similar content being viewed by others

References

  1. Morelli, A., Dziewonski, A. M. & Woodhouse, J. H. Anisotropy of the core inferred from PKIKP travel times. Geophys. Res. Lett. 13, 1545– 1548 (1986).

    Article  ADS  Google Scholar 

  2. Jeanloz, R. & Wenk, H.-R. Convection and anisotropy of the inner core. Geophys. Res. Lett. 15, 72– 75 (1988).

    Article  ADS  Google Scholar 

  3. Jeanloz, R. The nature of the Earth's core. Ann. Rev. Earth Planet. Sci. 18, 357–386 (1990).

    Article  ADS  Google Scholar 

  4. Stixrude, L. & Brown, J. M. in Ultrahigh-Pressure Mineralogy: Physics and Chemistry of the Earth's Deep Interior (ed. Hemley, R. J. ) 261–282 (Reviews in Mineralogy, Vol. 37, Mineralogical Society of America, Washington DC, 1998).

    Google Scholar 

  5. Poirier, J. -P. & Price, G. D. Primary slip system of ε-iron and anisotropy of the Earth's inner core. Phys. Earth Planet. Inter. 110, 147– 156 (1999).

    Article  ADS  CAS  Google Scholar 

  6. Soderlind, P., Moriarty, J. A. & Wills, J. M. First principles theory of iron up to earth-core pressures: structural, vibrational, and elastic properties. Phys. Rev. B 53, 14063–14072 ( 1996).

    Article  ADS  CAS  Google Scholar 

  7. Stixrude, L. & Cohen, R. E. High-pressure elasticity of iron and anisotropy of Earth's inner core. Science 267, 1972–1975 (1995).

    Article  ADS  CAS  Google Scholar 

  8. Saxena, S. et al. Synchrotron x-ray study of iron at high pressure and temperature. Science 269, 1703–1704 (1995).

    Article  ADS  CAS  Google Scholar 

  9. Yoo, C. S., Akella, J., Campbell, A. J., Mao, H. K. & Hemley, R. J. Phase diagram of iron by in situ x-ray diffraction: implications for Earth's core. Science 270, 1473–1475 (1995).

    Article  ADS  CAS  Google Scholar 

  10. Andrault, D., Fiquet, G., Kunz, M., Visocekas, F. & Hausermann, D. The orthorhombic structure of iron: an in-situ study at high temperature and high pressure. Science 278, 831–834 (1997).

    Article  ADS  CAS  Google Scholar 

  11. Shen, G. & Heinz, D. L. in Ultrahigh-Pressure Mineralogy: Physics and Chemistry of the Earth's Deep Interior (ed. Hemley, R. J.) 369–396 (Reviews in Mineralogy, Vol. 37, Mineralogical Society of America, Washington DC, 1998).

    Book  Google Scholar 

  12. Hemley, R. J. et al. X-ray imaging of stress and strain of diamond, iron, and tungsten at megabar pressures. Science 276, 1242– 1245 (1997).

    Article  CAS  Google Scholar 

  13. Singh, A. K., Mao, H. K., Shu, J. & Hemley, R. J. Estimation of single-crystal elastic moduli from polycrystalline x-ray diffraction at high pressure: application to FeO and iron. Phys. Rev. Lett. 80, 2157–2160 (1998).

    Article  ADS  CAS  Google Scholar 

  14. Mao, H. K. et al. Elasticity and rheology of iron above 220 GPa and the nature of the Earth's inner core. Nature 396, 741 –743 (1998).

    Article  ADS  CAS  Google Scholar 

  15. Wenk, H.-R., Matthies, S., Donovan, J. & Chateigner, D. BEARTEX, a Windows-based program system for quantitative texture analysis. J. Appl. Crystallogr. 31, 262–269 (1998).

    Article  CAS  Google Scholar 

  16. Kocks, U. F., Tomé, C. N. & Wenk, H.-R. Preferred Orientations in Polycrystals and Their Effect on Materials Properties (Cambridge Univ. Press, 1998).

    MATH  Google Scholar 

  17. Mao, H. K., Wu, Y., Chen, L. C., Shu, J. F. & Jephcoat, A. P. Static compression of iron to 300 GPa and Fe 0.8Ni0.2 alloy to 260 GPa: Implications for composition of the core. J. Geophys. Res. 95, 21737– 21742 (1990)

    Article  ADS  Google Scholar 

  18. Akhtar, A. Basal slip in zirconium. Acta Metall. 21, 1–11 (1973).

    Article  Google Scholar 

  19. Greenspan, J. in Beryllium, its Metallurgy and Properties (ed. Hausner, H. H.) 240–246 (University of California Press, Berkeley, 1965).

    Google Scholar 

  20. Tenckhoff, E. The development of the deformation texture in zirconium during rolling in sequential passes. Metall. Trans. A 9, 1401 –1412 (1978).

    Article  Google Scholar 

  21. Prantil, V. C., Jenkins, J. T. & Dawson, P. R. Modeling deformation induced textures in titanium, using analytical solutions for constrained single crystal response. J. Mech. Phys. Solids 43, 1283–1302 (1995).

    Article  ADS  CAS  Google Scholar 

  22. Lebensohn, R. A. & Tomé, C. N. A self-consistent anisotropic approach for the simulation of plastic deformation and texture development of polycrystals – Application to zirconium alloys. Acta Metall. Mater. 41, 2611–2624 (1993).

    Article  CAS  Google Scholar 

  23. Romanowicz, B., Li, X. D. & Durek, J. Anisotropy of the inner core: Could it be due to low-order convection? Science 274, 963– 966 (1996).

    Article  ADS  CAS  Google Scholar 

  24. Shearer, P. M. Constraints on inner core anisotropy from PKP(DF) travel times. J. Geophys. Res. 99, 19647–19659 (1994).

    Article  ADS  Google Scholar 

  25. Song, X. Anisotropy of the Earth's inner core. Rev. Geophys. 35, 297–313 (1997).

    Article  ADS  Google Scholar 

  26. Su, W. -J. & Dziewonski, A. M. Inner core anisotropy in three dimensions. J. Geophys. Res. 100, 9831– 9852 (1995).

    Article  ADS  Google Scholar 

  27. Hauk V. & Kockelmann, H. Evaluation of single crystal elastic constants from mechanical and X-ray elastic constants of the polycrystal. Z. Metall. 70, 500–502 (1979).

    Google Scholar 

  28. Bittorf, Ch., Matthies, S., Priesmeyer, H. G. & Wagner, R. Diffractive determination of thermo-elastic single crystal constants using polycrystalline samples. Intermetallics 7, 1–8 (1998).

    Google Scholar 

  29. Wenk, H. -R., Baumgardner, J. R., Lebensohn, R. A. & Tomé, C. N. A convection model to explain anisotropy of the inner core. J. Geophys. Res. 105, 5663–5677 (2000).

    Article  ADS  Google Scholar 

  30. Karato, S. Seismic anisotropy of the Earth's inner core caused by the Maxwell stress-induced flow. Nature 402, 871–873 (1999).

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

We thank A. K. Singh, S. Merkel and J. Hu for discussions and assistance. The work was supported by IGPP-LANL and NSF.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H.-R. Wenk.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wenk, HR., Matthies, S., Hemley, R. et al. The plastic deformation of iron at pressures of the Earth's inner core . Nature 405, 1044–1047 (2000). https://doi.org/10.1038/35016558

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35016558

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing