Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Constraining the atmospheric N2O budget from intramolecular site preference in N2O isotopomers

Abstract

Nitrous oxide (N2O) is an important trace gas in the atmosphere. It is an active greenhouse gas in the troposphere and it also controls ozone concentration in the stratosphere through nitric oxide production1. One way to trace the geochemical cycle of N2O is by measuring the natural abundance of stable isotopes, namely 15N and 18O (refs 2,3,4,5,6,7,8,9,10,11, 12,13,14,15). Here we report the intramolecular distribution of 15N within the linear NNO molecule, determined by measuring molecular and fragment ions of N2O on a modified mass spectrometer. This revealed a preference for 15N at the central N position, or α-site, within N2O isotopomers (isotope-containing molecules). Moreover, this preference varied significantly throughout the atmosphere. In the troposphere, low α-site preference indicates local emission of N2O from soils and fossil-fuel combustion, each with distinct isotopomer signatures, which then mixes with background N2O. In the stratosphere, on the other hand, loss of N2O is observed as enhanced α-site preference for 15N, due to fractionation during ultraviolet photolysis of N2O. We have constructed an atmospheric mass balance of N2O, incorporating isotopomer abundance, which shows that the intramolecular distribution of 15N is a parameter that has the potential to increase significantly the resolution with which sources and sinks of N2O can be identified and quantified in the atmosphere.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic diagram of the measurement system for isotopomer ratios in N2O.
Figure 2: Site preference and nitrogen isotope ratio at the β-site in atmospheric N2O.
Figure 3: Isotopomer and isotope compositions in stratospheric N2O.

Similar content being viewed by others

References

  1. Houghton, J. T. et al. (eds) Climate Change 1995: The Science of Climate Change (Cambridge University Press, 1995).

    Google Scholar 

  2. Yoshida, N. & Matsuo, S. Nitrogen isotope ratio of atmospheric N2O as a key to the global cycle of N2O. Geochem. J. 17, 231–239 (1983).

    Article  CAS  Google Scholar 

  3. Yoshida, N. et al.15N/14N ratio of dissolved N 2O in the eastern tropical Pacific Ocean. Nature 307, 442–444 (1984).

    Article  CAS  ADS  Google Scholar 

  4. Yoshida, N. 15N-depleted N2O as a product of nitrification. Nature 335, 528–529 ( 1988).

    Article  CAS  ADS  Google Scholar 

  5. Yoshida, N. et al. Nitrification rates and 15N abundances of N 2O and NO-3 in the western North Pacific. Nature 342, 895–897 (1989).

    Article  CAS  ADS  Google Scholar 

  6. Yamazaki, T., Yoshida, N., Wada, E. & Matsuo, S. N2O reduction by Azotobacter vinelandii with emphasis on kinetic isotope effects. Plant Cell Physiol. 28, 263– 271 (1987).

    CAS  Google Scholar 

  7. Ueda, S., Ogura, N. & Wada, E. Nitrogen isotope ratio of groundwater N2O. Geophys. Res. Lett. 18, 1449–1452 (1991).

    Article  CAS  ADS  Google Scholar 

  8. Wahlen, M. & Yoshinari, T. Oxygen isotope ratios in N 2O from different environments. Nature 313, 780–782 (1985).

    Article  CAS  ADS  Google Scholar 

  9. Kim, K. -R. & Craig, H. Two-isotope characterization of N 2O in the Pacific Ocean and constraints on its origin in deep water. Nature 347, 58–61 (1990).

    Article  CAS  ADS  Google Scholar 

  10. Kim, K. -R. & Craig, H. Nitrogen-15 and oxygen-18 characteristics of nitrous oxide: A global perspective. Science 262 , 1855–1857 (1993).

    Article  CAS  ADS  Google Scholar 

  11. Inoue, H. Y. & Mook, W. G. Equilibrium and kinetic nitrogen and oxygen isotope fractionations between dissolved and gaseous N2O. Chem. Geol. 113, 135–148 (1994).

    Article  CAS  ADS  Google Scholar 

  12. Tanaka, N. et al. High precision mass spectrometric analysis of isotopic abundance ratios in nitrous oxide by direct injection of N2O. Int. J. Mass Spectrom. Ion Proc. 142, 163– 175 (1995).

    Article  CAS  ADS  Google Scholar 

  13. Yoshinari, T. et al. Nitrogen and oxygen isotopic composition of N2O from suboxic waters of the eastern tropical North Pacific and the Arabian Sea –measurement by continuous-flow isotope-ratio monitoring. Mar. Chem. 56, 253–264 ( 1997).

    Article  CAS  Google Scholar 

  14. Rahn, T. & Wahlen, M. Stable isotope enrichment in stratospheric nitrous oxide. Science 278, 1776– 1778 (1997).

    Article  CAS  ADS  Google Scholar 

  15. Dore, J. E., Popp, B. N., Karl, D. M. & Sansone, F. J. A large source of atmospheric nitrous oxide from subtropical North Pacific surface waters. Nature 396, 63–66 (1998).

    Article  CAS  ADS  Google Scholar 

  16. Thiemens, M. H. & Trogler, W. C. Nylon production: An unknown source of atmospheric nitrous oxide. Science 251, 932–934 (1991).

    Article  CAS  ADS  Google Scholar 

  17. Cliff, S. S. & Thiemens, M. H. High-precision isotopic determination of the 18O/16O and 17O/16O ratios in nitrous oxide. Anal. Chem. 66 , 2791–2793 (1994).

    Article  CAS  Google Scholar 

  18. Cliff, S. S. & Thiemens, M. H. The 18O/16O and 17O/16O ratios in atmospheric nitrous oxide: A mass-independent anomaly. Science 278, 1774–1776 (1997).

    Article  CAS  ADS  Google Scholar 

  19. Cliff, S. S., Brenninkmeijer, C. A. M. & Thiemens, M. H. First measurement of the 18O/16O and 17O/16O ratios in stratospheric nitrous oxide: A mass independent anomaly. J. Geophys. Res. 104, 16171–16175 (1999).

    Article  CAS  ADS  Google Scholar 

  20. Rahn, T., Zhang, H., Wahlen, M. & Blake, G. A. Stable isotope fractionation during ultraviolet photolysis of N2O. Geophys. Res. Lett. 25, 4489–4492 (1998).

    Article  CAS  ADS  Google Scholar 

  21. Yung Y. L. & Miller, C. E. Isotopic fractionation of stratospheric nitrous oxide. Science 278, 1778– 1780 (1997).

    Article  ADS  Google Scholar 

  22. Johnston, J. C., Cliff, S. S. & Thiemens, M. H. Measurement of multioxygen isotopic (δ18O and δ17O) fractionation factors in the stratospheric sink reactions of nitrous oxide. J. Geophys. Res. 100 , 16801–116804 (1995).

    Article  CAS  ADS  Google Scholar 

  23. Holton, J. R. On the global exchange of mass between the stratosphere and troposphere. J. Atmos. Sci. 47, 392–395 (1990).

    Article  ADS  Google Scholar 

  24. Kroeze, C, Mosier, A. & Bouwman, L. Closing the global N2O budget: A retrospective analysis 1500–1994. Glob. Biogeochem. Cycles 13, 1–8 (1999).

    Article  CAS  ADS  Google Scholar 

  25. Zipf, E. C. & Prasad, S. S. Experimental evidence that excited ozone is a source of nitrous oxide. Geophys. Res. Lett. 25, 4333–4336 (1998).

    Article  CAS  ADS  Google Scholar 

  26. Friedman, L. & Bigeleisen, J. Oxygen and nitrogen isotope effects in the decomposition of ammonium nitrate. J. Chem. Phys. 18, 1325–1331 (1950).

    Article  CAS  ADS  Google Scholar 

  27. Begun, G. M. & Landau, L. Mass spectra and metastable transitions in isotopic nitrous oxide. J. Chem. Phys. 35, 547–551 (1961).

    Article  CAS  ADS  Google Scholar 

  28. Richardson, W. S. & Wilson, E. B. Jr The infra-red spectrum of 15N14NO and the force constants of nitrous oxide. J. Chem. Phys. 18, 694 –696 (1950).

    Article  CAS  ADS  Google Scholar 

  29. Toyoda, S. & Yoshida, N. Determination of nitrogen isotopomers of nitrous oxide on a modified isotope-ratio mass spectrometer. Anal. Chem. 71, 4711–4718 (1999).

    Article  CAS  Google Scholar 

  30. Brenninkmeijer, C. A. M. & Röckmann, T. Mass spectrometry of the intra-molecular nitrogen isotope distribution of environmental nitrous oxide using fragment-ion analysis. Rapid Commun. Mass Spectrom. 13, 2028–2033 ( 1999).

    Article  CAS  ADS  Google Scholar 

Download references

Acknowledgements

We thank the members of the balloon launch group of The Institute of Space and Astronautical Science, and the cryogenic sampling group, for cooperation in the stratospheric sampling. We thank M. Thiemens for comments that improved an earlier version of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naohiro Yoshida.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yoshida, N., Toyoda, S. Constraining the atmospheric N2O budget from intramolecular site preference in N2O isotopomers. Nature 405, 330–334 (2000). https://doi.org/10.1038/35012558

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35012558

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing