Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

An interconnected network of core-forming melts produced by shear deformation

Abstract

The formation mechanism of terrestrial planetary cores is still poorly understood, and has been the subject of numerous experimental studies1,2,3. Several mechanisms have been proposed by which metal—mainly iron with some nickel—could have been extracted from a silicate mantle to form the core. Most recent models involve gravitational sinking of molten metal or metal sulphide through a partially or fully molten mantle4,5 that is often referred to as a ‘magma ocean’. Alternative models invoke percolation of molten metal along an interconnected network (that is, porous flow) through a solid silicate matrix6,7. But experimental studies performed at high pressures1,2,3 have shown that, under hydrostatic conditions, these melts do not form an interconnected network, leading to the widespread assumption that formation of metallic cores requires a magma ocean. In contrast, here we present experiments which demonstrate that shear deformation to large strains can interconnect a significant fraction of initially isolated pockets of metal and metal sulphide melts in a solid matrix of polycrystalline olivine. Therefore, in a dynamic (non-hydrostatic) environment, percolation remains a viable mechanism for the segregation and migration of core-forming melts in a solid silicate mantle.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Transmitted light micrographs of olivine + Au samples.
Figure 2: Reflected light photomicrographs of olivine + Fe–Ni–S samples.
Figure 3: Three-dimensional reconstruction of Fe–Ni–S melt microstructure after deformation.

Similar content being viewed by others

References

  1. Minarik, W. G., Ryerson, F. J. & Watson, E. B. Textural entrapment of core-forming melts. Science 272, 530–533 ( 1996).

    Article  ADS  CAS  Google Scholar 

  2. Ballhaus, C. & Ellis, D. J. Mobility of core melts during Earth's accretion. Earth Planet. Sci. Lett. 143, 137–145 (1996).

    Article  ADS  CAS  Google Scholar 

  3. Shannon, M. C. & Agee, C. B. High-pressure constraints on percolative core-formation. Geophys. Res. Lett. 23, 2717–2720 (1996).

    Article  ADS  CAS  Google Scholar 

  4. Stevenson, D. J. in Origin of the Earth (eds Newsom, H. E. & Jones, J. H.) 231–249 (Oxford Univ. Press, 1990).

    Google Scholar 

  5. Karato, S. & Murthy, V. R. Core formation and chemical equilibrium in the Earth – I. Physical considerations. Phys. Earth Planet. Inter. 100, 61–79 ( 1997).

    Article  ADS  CAS  Google Scholar 

  6. Elsasser, W. M. in Earth Science and Meteorites (eds Geiss, J. & Goldberg, E.) 1–30 (North Holland, Amsterdam, 1963).

    Google Scholar 

  7. Brett, R. Chemical equilibration of the Earth's core and upper mantle. Geochim. Cosmochim. Acta 48, 1183–1188 (1984).

    Article  ADS  CAS  Google Scholar 

  8. Von Bargen, N. & Waff, H. S. Permeabilities, interfacial areas and cutrvatures of partially molten systems: Results of numerical computations of equilibrium microstructures. J. Geophys. Res. 91 , 9261–9276 (1986).

    Article  ADS  Google Scholar 

  9. Jurewicz, S. R. & Jones, J. H. Preliminary results of olivine/metal wetting experiments and the direct measurement of metal phase interconnectivity. Proc. Lunar Planet Sci. Conf. 26 , 709–710 (1995).

    ADS  Google Scholar 

  10. O'Neill, H. St. C. & Palme, H. in The Earth's Mantle (ed. Jackson, I.) 3–123 (Cambridge Univ. Press, 1998).

    Google Scholar 

  11. Zhang, S. & Karato, S. Lattice-preferred orientation of olivine aggregates deformed in simple shear. Nature 375, 774–777 (1995).

    Article  ADS  CAS  Google Scholar 

  12. Karato, S., Zhang, S., Zimmerman, M. E., Daines, M. J. & Kohlstedt, D. L. Experimental studies of shear deformation of mantle materials; towards structural geology of the mantle. Pure Appl. Geophys. 151, 589– 603 (1998)

    Article  ADS  Google Scholar 

  13. Zimmerman, M. E., Zhang, S., Kohlstedt, D. L. & Karato, S. Melt distribution in mantle rocks deformed in shear. Geophys. Res. Lett. 26, 1505–1508 ( 1999).

    Article  ADS  Google Scholar 

  14. Daines, M. J. & Kohlstedt, D. L. Influence of deformation on melt topology in peridotites. J. Geophys. Res. 107, 10257–10271 (1997).

    Article  ADS  Google Scholar 

  15. Arculus, R. J., Holmes, R. D., Powell, R. & Righter, K. in Origin of the Earth (ed. Newsom, H. E. & Jones, J. H.) 251 –272 (Oxford Univ. Press, 1990).

    Google Scholar 

  16. Walter, M. At the magma ocean floor. Nature 381, 646 (1996).

    Article  ADS  CAS  Google Scholar 

  17. Stevenson, D. J. in Workshop on the Early Earth: The Interval from Accretion to the Older Archean (eds Burke, K. & Ashwal, L. D.) 76– 78 (LPI Tech. Rep. 85-01, Lunar and Planetary Institute, Houston, 1985).

    Google Scholar 

  18. Ringwood, A. E. in Origin of the Earth (eds Newsom, H. E. & Jones, J. H.) 101–134 (Oxford Univ. Press, 1990).

    Google Scholar 

  19. Li, J. & Agee, C. B. Geochemistry of mantle-core formation at high pressure. Nature 381, 686– 689 (1996).

    Article  ADS  CAS  Google Scholar 

  20. Righter, K. & Drake, M. J. Effect of water on metal-silicate partitioning of siderophile elements: a high pressure and temperature terrestrial magma ocean and core formation. Earth Planet. Sci. Lett. 171, 383–399 (1999).

    Article  ADS  CAS  Google Scholar 

  21. Murthy, V. R. Early differentiation of the Earth and the problem of mantle siderophile elements: A new approach. Science 253, 303– 306 (1991).

    Article  ADS  CAS  Google Scholar 

  22. Benz, W. & Cameron, A. G. W. in Origin of the Earth (eds Newsom, H. E. & Jones, J. H.) 61–67 (Oxford Univ. Press, 1990).

    Google Scholar 

  23. Agee, C. B. & Longhi, J. (eds) Workshop on the Physics and Chemistry of Magma Oceans from 1 bar to 4 Mbar (LPI Tech. Rep. 92–03, Lunar and Planetary Institute, Houston, 1992).

    Google Scholar 

  24. Wetherill, G. W. Formation of the Earth. Annu. Rev. Earth Planet. Sci. 18, 205–256 (1990).

    Article  ADS  Google Scholar 

  25. Hanks, T. C & Anderson, D. L. The early thermal history of the Earth. Phys. Earth Planet. Inter. 2, 19–29 (1969).

    Article  ADS  Google Scholar 

  26. Gaetani, G. A. & Grove, T. L. Partitioning of moderately siderophile elements among olivine, silicate melt, and sulphide melt: Constraints on core formation in the Earth and Mars. Geochim. Cosmochim. Acta 61, 1829–1846 (1997).

    Article  ADS  CAS  Google Scholar 

  27. Connerney, J. E. P. et al. Magnetic lineations in the ancient crust of Mars. Science 284, 794–798 ( 1999).

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

We thank D. Xirouchakis for help with fabrication of our samples, and M. Hirschmann, R. Murthy and S. Karato for discussion and comments on an earlier version of the manuscript. W. Minarik and M. Walter provided constructive comments on the manuscript. P. Morin produced the three-dimensional visualization of our deformation microstructures (Fig. 3). This work was supported by Deutsche Forschungsgemeinschaft (D.B.), NASA and the NSF.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Bruhn.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bruhn, D., Groebner, N. & Kohlstedt, D. An interconnected network of core-forming melts produced by shear deformation . Nature 403, 883–886 (2000). https://doi.org/10.1038/35002558

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35002558

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing