Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Structure of the intact transactivation domain of the human papillomavirus E2 protein

Abstract

Papillomaviruses cause warts and proliferative lesions in skin and other epithelia. In a minority of papillomavirus types (‘high risk’, including human papillomaviruses 16, 18, 31, 33, 45 and 56), further transformation of the wart lesions can produce tumours1. The papillomavirus E2 protein controls primary transcription and replication of the viral genome2. Both activities are governed by a 200 amino-acid amino-terminal module (E2NT) which is connected to a DNA-binding carboxy-terminal module by a flexible linker. Here we describe the crystal structure of the complete E2NT module from human papillomavirus 16. The E2NT module forms a dimer both in the crystal and in solution. Amino acids that are necessary for transactivation are located at the dimer interface, indicating that the dimer structure may be important in the interactions of E2NT with viral and cellular transcription factors. We propose that dimer formation may contribute to the stabilization of DNA loops3 which may serve to relocate distal DNA-binding transcription factors to the site of human papillomavirus transcription initiation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Functional and structural assignments of papillomavirus E2.
Figure 2: Stereo diagram showing the distribution of conserved residues within the E2NT monomer.
Figure 3: Structural features of E2.
Figure 4: Loop formation in the upstream regulatory region (URR) of HPVs.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

Data deposits

The structure factors and the refined coordinates of the E2NT module have been deposited in the Protein Data Bank9 under accession codes R1DTOSF and 1DTO, respectively.

References

  1. zur Hausen, H. Molecular pathogenesis of cancer of the cervix and its causation by specific human papillomavirus types. Curr. Top. Microbiol. Immunol. 186, 131–156 (1994).

    CAS  PubMed  Google Scholar 

  2. McBride, A. & Myers, G. in Human Papillomaviruses 1997 (eds Myers, G. et al.) III-54–III-73 (Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, New Mexico, 1997).

    Google Scholar 

  3. Knight, J. D., Li, R. & Botchan, M. The activation domain of the bovine papillomavirus E2 protein mediates association of DNA-bound dimers to form DNA loops. Proc. Natl Acad. Sci. USA 88, 3204–3208 ( 1991).

    Article  ADS  CAS  Google Scholar 

  4. Mohr, I. J. et al. Targeting the E1 replication protein to the papillomavirus origin of replication by complex formation with the E2 transactivator. Science 250, 1694–1699 ( 1990).

    Article  ADS  CAS  Google Scholar 

  5. Breiding, D. E. et al. Functional interaction of a novel cellular protein with the papillomavirus E2 transactivation domain. Mol. Cell. Biol. 17, 7208–7219 (1997).

    Article  CAS  Google Scholar 

  6. Yao, J. M., Breiding, D. E. & Androphy, E. J. Functional interaction of the bovine papillomavirus E2 transactivation domain with TFIIB. J. Virol. 72, 1013–1019 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Hegde, R. S., Grossman, S. R., Laimins, L. A. & Sigler, P. B. Crystal structure at 1.7 Å of the bovine papillomavirus-1 E2 DNA-binding domain bound to its DNA target. Nature 359, 505–512 (1992).

    Article  ADS  CAS  Google Scholar 

  8. Harris, S. F. & Botchan, M. R. Crystal structure of the human papillomavirus type 18 E2 activation domain. Science 284, 1673–1677 (1999).

    Article  ADS  CAS  Google Scholar 

  9. Bernstein, F. C. et al. The protein data bank: a computer based archival file for macromolecular structures. J. Mol. Biol. 112, 535–542 (1977).

    Article  CAS  Google Scholar 

  10. Cooper, C. S., Upmeyer, S. N. & Winokur, P. L. Identification of single amino acids in the human papillomavirus 11 E2 protein critical for the transactivation or replication functions. Virol. 241, 312– 322 (1998).

    Article  CAS  Google Scholar 

  11. Mok, Y. K., Gay, G. D., Butler, P. J. & Bycroft, M. Equilibrium dissociation and unfolding of the dimeric human papillomavirus strain-16 E2 DNA-binding domain. Protein Sci. 5, 310– 319 (1996).

    Article  CAS  Google Scholar 

  12. Foguel, D., Silva, J. L. & de Prat-Gay, G. Characterization of a partially folded monomer of the DNA-binding domain of human papillomavirus E2 protein obtained at high pressure. J. Biol. Chem. 273, 9050– 9057 (1998).

    Article  CAS  Google Scholar 

  13. Estojak, J., Brent, R. & Golemis, E. Correlation of two-hybrid affinity with in vitro measurements. Mol. Cell. Biol. 15, 5820– 5829 (1995).

    Article  CAS  Google Scholar 

  14. Sengchanthalangsy, L. et al. Characterisation of the dimer interface of transcription factor NKkB p50 homodimer. J. Mol. Biol. 289, 1029–1040 (1999).

    Article  CAS  Google Scholar 

  15. Chao, S.-F et al. Subunit affinities and stoichiometries of the human papillomavirus type 11 E1:E2:DNA complex. Biochemistry 38, 4586–4594 (1999).

    Article  CAS  Google Scholar 

  16. Gauthier, J.-M., Dostatni, N., Lusky, M. & Yaniv, M. Two DNA-bound E2 dimers are required for strong transcriptional activation and for cooperation with cellular factors in most cells. The New Biologist 3, 498–509 (1991).

    CAS  PubMed  Google Scholar 

  17. Abroi, A., Kurg, R. & Ustav, M. Transcriptional and replicational activation functions in the bovine papillomavirus type 1 E2 protein are encoded by different structural determinants. J. Virol. 70, 6169–6179 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Brokaw, J. L., Blanco, M. & McBride, A. A. Amino acids critical for the functions of the bovine papillomavirus type 1 E2 transactivator. J. Virol. 70, 23–29 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Desaintes, C. & Demeret, C. Control of papillomavirus DNA replication and transcription. Semin. Cancer Biol. 7, 339–347 (1996).

    Article  CAS  Google Scholar 

  20. Burns, J. E. et al. Expression, crystallization and preliminary X-ray analysis of the E2 transactivation domain from papillomavirus type 16. Acta Crystallogr. D 54, 1471–1474 (1998).

    Article  CAS  Google Scholar 

  21. Otwinowski, Z. & Minor, W. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 276 , 307–326 (1997).

    Article  CAS  Google Scholar 

  22. Collaborative Computational Project N4. The CCP4 suite: programs for protein crystallography. Acta Crystallogr. D 50, 760– 763 (1994).

    Article  Google Scholar 

  23. Sheldrick, G. M. & Schneider, T. R. SHELXL: high-resolution refinement. Methods Enzymol. 277, 319– 343 (1997).

    Article  CAS  Google Scholar 

  24. Cowtan, K. D. & Main, P. Phase combination and cross-validation in iterated density-modification calculations. Acta Crystallogr. D 52, 43–48 ( 1996).

    Article  CAS  Google Scholar 

  25. Oldfield, T.J. in Proceedings of the CCP4 Study Weekend (eds Bailey, S., Hubbard, R. & Waller D.) 15–18 (Daresbury Laboratory, Warrington, UK, 1994).

    Google Scholar 

  26. Laue, T.M., Shah, B.D., Ridgeway, T.M. & Pelletier, S.L. Computer-aided interpretation of analytical sedimentation data for proteins. In Analytical Ultracentrifugation in Biochemistry and Polymer Science (eds Harding, S.E., Rowe, A.J. & Horton, J.C.) 90–125 (Royal Society of Chemistry, London, 1992).

    Google Scholar 

  27. Kraulis, P.J. MOLSCRIPT—a program to produce both detailed and schematic plots of proteins structures. J. Appl. Crystallogr. 24, 946–950 (1991).

    Article  Google Scholar 

  28. Esnouf, R.M. An extensively modified version of Molscript that includes greatly enhanced coloring capabilities. J. Mol. Graphics 15, 133–138 (1997).

    Google Scholar 

  29. Merritt, E.A & Bacon, D.J. Raster3D: photorealistic molecular graphics. Methods Enzymol. 277, 505–524 (1997).

Download references

Acknowledgements

K.S.W., G.G.D., A.A.A and O.V.M. thank the BBSRC for infrastructure support and the EC for supporting work at EMBL, Hamburg, through the Access to Large Installations Project, Contract Number CHGE-CT93-0040. We also thank Yorkshire Cancer Research for project and program grant support to N.J.M., J.E.B., I.B.B. and O.V.M. A.A.A. is supported by a Wellcome Trust Career Development Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Keith S. Wilson.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Antson, A., Burns, J., Moroz, O. et al. Structure of the intact transactivation domain of the human papillomavirus E2 protein. Nature 403, 805–809 (2000). https://doi.org/10.1038/35001638

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35001638

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing