Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Quantum mirages formed by coherent projection of electronic structure

Abstract

Image projection relies on classical wave mechanics and the use of natural or engineered structures such as lenses or resonant cavities. Well-known examples include the bending of light to create mirages in the atmosphere, and the focusing of sound by whispering galleries. However, the observation of analogous phenomena in condensed matter systems is a more recent development1, facilitated by advances in nanofabrication. Here we report the projection of the electronic structure surrounding a magnetic Co atom to a remote location on the surface of a Cu crystal; electron partial waves scattered from the real Co atom are coherently refocused to form a spectral image or ‘quantum mirage’. The focusing device is an elliptical quantum corral2,3, assembled on the Cu surface. The corral acts as a quantum mechanical resonator, while the two-dimensional Cu surface-state electrons form the projection medium. When placed on the surface, Co atoms display a distinctive spectroscopic signature, known as the many-particle Kondo resonance4,5,6, which arises from their magnetic moment. By positioning a Co atom at one focus of the ellipse, we detect a strong Kondo signature not only at the atom, but also at the empty focus. This behaviour contrasts with the usual spatially-decreasing response of an electron gas to a localized perturbation7.

Your institute does not have access to this article

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Detection of the Kondo resonance localized around a single Co atom on Cu(111).
Figure 2: Elliptical electron resonators.
Figure 3: Visualization of the quantum mirage.
Figure 4: Tunnelling spectra.

References

  1. Spector, J., Stormer, H. L., Baldwin, K. W., Pfeiffer, L. N. & West, K. W. Electron focusing in two-dimensional systems by means of an electrostatic lens. Appl. Phys. Lett. 56, 1290–1292 (1990).

    ADS  CAS  Article  Google Scholar 

  2. Crommie, M. F., Lutz, C. P. & Eigler, D. M. Confinement of electrons to quantum corrals on a metal surface. Science 262, 218– 220 (1993).

    ADS  CAS  Article  Google Scholar 

  3. Heremans, J. J., von Molnár, S., Awschalom, D. D. & Gossard, A. C. Ballistic electron focusing by elliptic reflecting barriers. Appl. Phys. Lett. 74, 1281–1283 (1999).

    ADS  CAS  Article  Google Scholar 

  4. Kondo, J. Resistance minimum in dilute magnetic alloys. Prog. Theor. Phys. 32, 37–49 (1964).

    ADS  CAS  Article  Google Scholar 

  5. Li, J., Schneider, W.-D., Berndt, R. & Delley, B. Kondo scattering observed at a single magnetic impurity. Phys. Rev. Lett. 80, 2893–2896 (1998).

    ADS  CAS  Article  Google Scholar 

  6. Madhavan, V., Chen, W., Jamneala, T., Crommie, M. F. & Wingreen, N. S. Tunnelling into a single magnetic atom: Spectroscopic evidence of the Kondo resonance. Science 280, 567–569 (1998).

    ADS  CAS  Article  Google Scholar 

  7. Kittel, C. Quantum Theory of Solids (Wiley, New York, 1963).

    MATH  Google Scholar 

  8. Hewson, A. C. The Kondo Problem to Heavy Fermions (Cambridge Univ. Press, Cambridge, 1997).

    Google Scholar 

  9. Fano, U. Effects of configuration interaction on intensities and phase shifts. Phys. Rev. 124, 1866–1878 (1961).

    ADS  CAS  Article  Google Scholar 

  10. Crommie, M. F., Lutz, C. P. & Eigler, D. M. Imaging standing waves in a two-dimensional electron gas. Nature 363, 524–527 (1993).

    ADS  CAS  Article  Google Scholar 

  11. Hasegawa, Y. & Avouris, P. Direct observation of standing wave formation at surface steps using scanning tunneling spectroscopy. Phys. Rev. Lett. 71, 1071–1074 (1993).

    ADS  CAS  Article  Google Scholar 

  12. Eigler, D. M. & Schweizer, E. K. Positioning single atoms with a scanning tunnelling microscope. Nature 344, 524–526 (1990).

    ADS  CAS  Article  Google Scholar 

  13. Stroscio, J. A. & Eigler, D. M. Atomic and molecular manipulation with the scanning tunneling microscope. Science 254, 1319–1326 (1991).

    ADS  CAS  Article  Google Scholar 

  14. Tomsovic, S. & Heller, E. J. Semiclassical construction of chaotic eigenstates. Phys. Rev. Lett. 70, 1405– 1408 (1993).

    ADS  CAS  Article  Google Scholar 

  15. Chan, Y. S. & Heller, E. J. Scanning tunnel microscopy surface state electron scattering: Two-tip results from one-tip data. Phys. Rev. Lett. 78, 2570–2572 (1997).

    ADS  CAS  Article  Google Scholar 

  16. Stipe, B. C., Rezaei, M. A. & Ho, W. Single-molecule vibrational spectroscopy and microscopy. Science 280, 1732–1735 ( 1998).

    ADS  CAS  Article  Google Scholar 

  17. Lang, N. D. Spectroscopy of single atoms in the scanning tunneling microscope. Phys. Rev. B 34, 5947–5950 (1986).

    ADS  CAS  Article  Google Scholar 

  18. Everson, M. P., Jaklevic, R. C. & Shen, W. Measurement of the local density of states on a metal surface: Scanning tunneling spectroscopic imaging of Au(111). J. Vac. Sci. Technol. A 8, 3662–3665 (1990).

    ADS  CAS  Article  Google Scholar 

  19. Kittel, C. Indirect exchange interactions in metals. Solid State Phys. 22, 1–26 (1968).

    CAS  Google Scholar 

Download references

Acknowledgements

We thank B. A. Jones, E. J. Heller, J. S. Hersch, G. Fiete, A. J. Heinrich and C. T. Rettner for helpful discussions, and L. Folks for expert assistance with image preparation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. C. Manoharan.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Manoharan, H., Lutz, C. & Eigler, D. Quantum mirages formed by coherent projection of electronic structure . Nature 403, 512–515 (2000). https://doi.org/10.1038/35000508

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35000508

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing