Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Observation of localization of light in linear photonic quasicrystals with diverse rotational symmetries

Abstract

Since their first observation in metallic alloys, quasicrystals have remained highly intriguing ubiquitous physical structures, sharing properties of ordered and disordered media. They can be created in various ways, including optically induced or technologically fabricated structures in photonic and phononic systems. Understanding the wave propagation in such two-dimensional structures attracts considerable attention, with strikingly different localization properties observed in various quasicrystalline systems. Direct observation of localization in purely linear photonic quasicrystals remains elusive, and the impact of varying rotational symmetry on localization is yet to be understood. Here, using sets of interfering plane waves, we create photonic two-dimensional quasicrystals with different rotational symmetries. We demonstrate experimentally that linear localization of light does occur even in clean linear quasicrystals. We found that light localization occurs above a critical depth of optically induced potential and that this critical depth rapidly decreases with increasing order of the discrete rotational symmetry of the quasicrystal. These findings pave the way for achieving wave localization in a wide variety of aperiodic systems obeying discrete symmetries, with possible applications in photonics, atomic physics, acoustics and condensed matter.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Quasicrystals of different symmetries and cross-sections of corresponding optical potentials.
Fig. 2: Form factors and profiles of linear eigenmodes supported by quasicrystals.
Fig. 3: Propagation of input Gaussian beams and their form factors.
Fig. 4: Experimental observation of light localization in quasicrystals.
Fig. 5: Experimental results for different orders of the point rotational symmetry of the quasicrystals.

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author on reasonable request.

Code availability

The codes that support the findings of this study are available from the corresponding author on reasonable request.

References

  1. Shechtman, D., Blech, I., Gratias, D. & Cahn, J. W. Metallic phase with long-range orientational order and no translational symmetry. Phys. Rev. Lett. 53, 1951 (1984).

    Article  ADS  CAS  Google Scholar 

  2. Levine, D. & Steinhardt, P. J. Quasicrystals: a new class of ordered structures. Phys. Rev. Lett. 53, 2477 (1984).

    Article  ADS  CAS  Google Scholar 

  3. Steurer, W. Quasicrystals: What do we know? What do we want to know? What can we know? Acta Crystallogr. A 74, 1–11 (2018).

    Article  MathSciNet  CAS  Google Scholar 

  4. Steurer, W. Twenty years of structure research on quasicrystals. Part I. Pentagonal, octagonal, decagonal and dodecagonal quasicrystals. Z. Kristallogr. Cryst. Mater. 219, 391–446 (2004).

    Article  MathSciNet  CAS  Google Scholar 

  5. Kamiya, K. et al. Discovery of superconductivity in quasicrystal. Nat. Commun. 9, 1–8 (2018).

    Article  Google Scholar 

  6. Ahn, S. J. et al. Dirac electrons in a dodecagonal graphene quasicrystal. Science 361, 782–786 (2018).

    Article  ADS  CAS  PubMed  Google Scholar 

  7. Yao, W. et al. Quasicrystalline 30° twisted bilayer graphene as an incommensurate superlattice with strong interlayer coupling. Proc. Natl Acad. Sci. USA 115, 6928–6933 (2018).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  8. Sbroscia, M. et al. Observing localization in a 2D quasicrystalline optical lattice. Phys. Rev. Lett. 125, 200604 (2020).

    Article  ADS  CAS  PubMed  Google Scholar 

  9. Mace, N., Jagannathan, A. & Duneau, M. Quantum simulation of a 2D quasicrystal with cold atoms. Crystals 6, 124 (2016).

    Article  Google Scholar 

  10. Lellouch, S. & Sanchez-Palencia, L. Localization transition in weakly interacting Bose super-fluids in one-dimensional quasiperiodic lattices. Phys. Rev. A 90, 061602(R) (2014).

    Article  ADS  Google Scholar 

  11. Sanchez-Palencia, L. & Lewenstein, M. Disordered quantum gases under control. Nat. Phys. 6, 87–95 (2010).

    Article  CAS  Google Scholar 

  12. Tanese, D. et al. Fractal energy spectrum of a polariton gas in a Fibonacci quasiperiodic potential. Phys. Rev. Lett. 112, 146404 (2014).

    Article  ADS  CAS  PubMed  Google Scholar 

  13. Goblot, V. et al. Emergence of criticality through a cascade of delocalization transitions in quasiperiodic chains. Nat. Phys. 16, 832–836 (2020).

    Article  CAS  Google Scholar 

  14. Freedman, B. et al. Wave and defect dynamics in nonlinear photonic quasicrystals. Nature 440, 1166–1169 (2006).

    Article  ADS  CAS  PubMed  Google Scholar 

  15. Chan, Y. S., Chan, C. T. & Liu, Z. Y. Photonic band gaps in two dimensional photonic quasicrystals. Phys. Rev. Lett. 80, 956 (1998).

    Article  ADS  CAS  Google Scholar 

  16. Freedman, B., Lifshitz, R., Fleischer, J. W. & Segev, M. Phason dynamics in nonlinear photonic quasicrystals. Nat. Mater. 6, 776–781 (2007).

    Article  ADS  CAS  PubMed  Google Scholar 

  17. Xavier, J., Boguslawski, M., Rose, P., Joseph, J. & Denz, C. Reconfigurable optically induced quasicrystallographic three-dimensional complex nonlinear photonic lattice structures. Adv. Mater. 22, 356–360 (2010).

    Article  CAS  PubMed  Google Scholar 

  18. Boguslawski, M., Rose, P. & Denz, C. Increasing the structural variety of discrete nondiffracting wave fields. Phys. Rev. A 84, 013832 (2011).

    Article  ADS  Google Scholar 

  19. Vardeny, Z. V., Nahata, A. & Agrawal, A. Optics of photonic quasicrystals. Nat. Photon. 7, 177–187 (2013).

    Article  ADS  CAS  Google Scholar 

  20. Steurer, W. & Sutter-Widmer, D. Photonic and phononic quasicrystals. J. Phys. D 40, R229 (2007).

    Article  ADS  CAS  Google Scholar 

  21. Guidoni, L., Trich´e, C., Verkerk, P. & Grynberg, G. Quasiperiodic optical lattices. Phys. Rev. Lett. 79, 3363 (1997).

    Article  ADS  CAS  Google Scholar 

  22. Wiersma, D. S. Disordered photonics. Nat. Photon. 7, 188–196 (2013).

    Article  ADS  CAS  Google Scholar 

  23. Segev, M., Silberberg, Y. & Christodoulides, D. N. Anderson localization of light. Nat. Photon. 7, 197–204 (2013).

    Article  ADS  CAS  Google Scholar 

  24. Huang, C. et al. Localization–delocalization wavepacket transition in Pythagorean aperiodic potentials. Sci Rep. 6, 32546 (2016).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  25. Wang, P. et al. Localization and delocalization of light in photonic moiré lattices. Nature 557, 42–46 (2020).

    Article  ADS  Google Scholar 

  26. Levi, L. et al. Disorder-enhanced transport in photonic quasicrystals. Science 332, 1541–1544 (2011).

    Article  ADS  CAS  PubMed  Google Scholar 

  27. Cameron, P. G. Introduction to Algebra (Oxford Univ. Press, 1998).

  28. Landau, L. D. & Lifshitz, E. M. Quantum Mechanics (Non-relativistic Theory) (Butterworth-Heinemann, 1981).

  29. Simon, B. The Bound state of weakly coupled Schrödinger operators in one and two dimensions. Ann. Phys. 97, 279 (1976).

    Article  ADS  Google Scholar 

  30. Sanchez-Palencia, L. & Santos, L. Bose–Einstein condensates in optical quasicrystal lattices. Phys. Rev. A 72, 053607 (2005).

    Article  ADS  Google Scholar 

  31. Viebahn, K., Sbroscia, M., Carter, E., Yu, J.-C. & Schneider, U. Matter-wave diffraction from a quasicrystalline optical lattice. Phys. Rev. Lett. 122, 110404 (2019).

    Article  ADS  CAS  PubMed  Google Scholar 

  32. Gautier, R., Yao, H. & Sanchez-Palencia, L. Strongly interacting bosons in a two-dimensional quasicrystal lattice. Phys. Rev. Lett. 126, 110401 (2021).

    Article  ADS  CAS  PubMed  Google Scholar 

  33. Mao, X., Shao, Z., Luan, H., Wang, S. & Ma, R. Magic-angle lasers in nanostructured moiré superlattice. Nat. Nanotechnol. 16, 1099 (2021).

    Article  ADS  CAS  PubMed  Google Scholar 

  34. Huang, L., Zhang, W. & Zhang, X. Moiré quasibound states in the continuum. Phys. Rev. Lett. 128, 253901 (2022).

    Article  ADS  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

P.W., Q.F. and F.Y. acknowledge the support of “Shanghai Jiao Tong University Scientific and Technological Innovation Funds”, and Shanghai Outstanding Academic Leaders Plan (grant no. 20XD1402000). P.W. acknowledges funding from the National Natural Science Foundation (grant no. 12304366) and China Postdoctoral Science Foundation (grant no. BX20230217). Q.F. acknowledges the support of China Postdoctoral Science Foundation (grant no. BX20230218). V.V.K. acknowledges financial support from the Portuguese Foundation for Science and Technology (FCT) under Contracts PTDC/FIS-OUT/3882/2020 and UIDB/00618/2020. Y.V.K. acknowledges funding by the research project no. FFUU-2021-0003 of the Institute of Spectroscopy of the Russian Academy of Sciences. We would like to express our gratitude to the anonymous referees for their valuable suggestions regarding the filling fractions and structure factors used to elucidate the order of the quasicrystals in explaining the threshold LDT.

Author information

Authors and Affiliations

Authors

Contributions

All of the authors susbtantially contributed to the paper.

Corresponding author

Correspondence to Fangwei Ye.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Photonics thanks Gianluigi Zito and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Numerically calculated symmetric quasicrystal patterns.

Numerically calculated N-fold symmetric quasicrystal patterns with N = 5, 7, 8., 12, as well as the periodic pattern with N = 6, for k = 2 and A2 = 2.24.

Extended Data Fig. 2 Experimentally intensity distributions below and above LDT point.

Experimentally observed delocalized output intensity distributions for probe beam observed below LDT point (at low values of the applied electric field) and localized distributions observed above LDT point (at sufficiently high values of the electric field), for N = 5, 7-12. At N = 6 the field is delocalized at all amplitudes of the electric field. The distributions are shown within the window of 400 µm × 400 µm.

Extended Data Fig. 3 Experimental setup.

SLM, spatial light modulator; BS, beam splitter; L, lens; FM, Fourier mask; AT,variable attenuator; SBN, strontium barium niobate crystal; CCD, charged-coupled device. Bottom-left, the phase diagram for N = 5; bottom-right, the structure of Fourier mask.

Supplementary information

Supplementary Information

Supplementary Figs. 1–5 and Discussion.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, P., Fu, Q., Konotop, V.V. et al. Observation of localization of light in linear photonic quasicrystals with diverse rotational symmetries. Nat. Photon. 18, 224–229 (2024). https://doi.org/10.1038/s41566-023-01350-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41566-023-01350-6

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing