Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Three-dimensional structure of the E. coli DMA-binding protein FIS

Abstract

THE factor for inversion stimulation, FIS, is involved in several cellular processes, including site-specific recombination and tran-scriptional activation1–4. In the reactions catalysed by the DNA invertases Gin, Hin and Cin, FIS stimulates recombination by binding to an enhancer sequence1. Within the enhancer, two FIS dimers (each 2 x 98 amino acids)5–7 bind to two 15-base-pair consensus sequences8,9 (Fig. 1) and induce bending of DNA10,11. Current models propose that the enhancer–FIS complex organizes a specific synapse, either through direct interactions with Gin, or by modelling the substrate into a configuration suitable for recombination1,9,12. Using X-ray analysis at 2.0Å resolution, we now show that FIS is composed of four α helices tightly intertwined to form a globular dimer with two protruding helix–turn–helix motifs. The 24 N-terminal amino acids are so poorly defined in the electron density map as to make interpretation doubtful, indicating that they might act as 'feelers' suitable for DNA or protein (invertase) recognition. We infer from model building that DNA has to bend for tight binding to FIS.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Johnson, R. C. & Simon, M. I. Trends Genet. 3, 262–267 (1987).

    Article  CAS  Google Scholar 

  2. Thompson, J. F., de Vargas, L. M., Koch, C., Kahmann, R. & Landy, A. Cell 50, 901–908 (1987).

    Article  CAS  Google Scholar 

  3. Bétermier, M., Lefrère, V., Koch, C., Alazard, R. & Chandler, M. Molec. Microbiol. 3, 459–468 (1989).

    Article  Google Scholar 

  4. Nilsson, L., Vanet, A., Vijgenboom, E. & Bosch, L. EMBO J. 9, 727–734 (1990).

    Article  CAS  Google Scholar 

  5. Koch, C. & Kahmann, R. J. biol. Chem. 261, 15673–15678 (1986).

    CAS  PubMed  Google Scholar 

  6. Johnson, R. C., Ball, C. A., Pfeffer, D. & Simon, M. I. Proc. natn. Acad. Sci. U.S.A. 85, 3484–3488 (1988).

    Article  ADS  CAS  Google Scholar 

  7. Koch, C., Vandekerckhove, J. & Kahmann, R. Proc. natn. Acad. Sci. U.S.A. 85, 4237–4241 (1988).

    Article  ADS  CAS  Google Scholar 

  8. Hübner, P. & Arber, W. EMBO J. 8, 577–585 (1989).

    Article  Google Scholar 

  9. Bruist, M. F., Glasgow, A. C., Johnson, R. C. & Simon, M. I. Genes Dev. 1, 762–772 (1987).

    Article  CAS  Google Scholar 

  10. Hübner, P., Haffter, P., Iida, S. & Arber, W. J. molec. Biol. 205, 493–500 (1989).

    Article  Google Scholar 

  11. Thompson, J. F. & Landy, A. Nucleic. Acids Res. 16, 9687–9705 (1988).

    Article  CAS  Google Scholar 

  12. Kanaar, R., Van de Putte, P. & Cozzarelli, N. R. Proc. natn. Acad. Sci. U.S.A. 85, 752–756 (1988).

    Article  ADS  CAS  Google Scholar 

  13. Choe, H.-W. et al. J. molec. Biol. 208, 209–210 (1989).

    Article  CAS  Google Scholar 

  14. CCP4-The Cooperative Computing Project in Crystallography (SERC Daresbury Laboratory, Warrington, UK, 1986).

  15. Wang, B. C. Meth. Enzym. 115, 90–112 (1985).

    Article  CAS  Google Scholar 

  16. Rice, D. W. Acta crystallogr. A37, 491–500 (1981).

    Article  ADS  CAS  Google Scholar 

  17. Tronrud, D. E., Ten Eyck, L. F. & Matthews, B. W. Acta crystallogr. A43, 489–501 (1987).

    Article  CAS  Google Scholar 

  18. Wilmot, C. M. & Thornton, J. M. J. molec. Biol. 203, 221–232 (1988).

    Article  CAS  Google Scholar 

  19. Steitz, T. A. Q. Rev. Biophys. 23, 205–280 (1990).

    Article  CAS  Google Scholar 

  20. Rafferty, J. B., Somers, W. S., Saint-Girons, I. & Phillips, S. E. V. Nature 341, 705–710 (1989).

    Article  ADS  CAS  Google Scholar 

  21. Breg, J. N., van Opheusdeng, J. H. J., Burgering, M. J. M., Boelens, R. & Kaptein, R. Nature 346, 586–589 (1990).

    Article  ADS  CAS  Google Scholar 

  22. Brennan, R. G. & Matthews, B. W. J. biol. Chem. 264, 1903–1906 (1989).

    CAS  Google Scholar 

  23. Anderson, W. F., Ohlendorf, D. H., Takeda, Y. & Matthews, B. W. Nature 290, 754–758 (1981).

    Article  ADS  CAS  Google Scholar 

  24. Koch, C. thesis, Freie Univ., Berlin (1988).

  25. Richmond, T. J., Finch, J. T., Rushton, B., Rhodes, D. & Klug, A. Nature 311, 532–537 (1984).

    Article  ADS  CAS  Google Scholar 

  26. Pabo, C. O. et al Science 247, 1210–1213 (1990).

    Article  ADS  CAS  Google Scholar 

  27. Pabo, C. O. & Lewis, M. Nature 298, 443–447 (1982).

    Article  ADS  CAS  Google Scholar 

  28. Tanaka, I., Appelt, K., Dijk, J., White, S. W. & Wilson, K. S. Nature 310, 376–381 (1984).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kostrewa, D., Granzin, J., Koch, C. et al. Three-dimensional structure of the E. coli DMA-binding protein FIS. Nature 349, 178–180 (1991). https://doi.org/10.1038/349178a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/349178a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing