Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Cryo-EM structures of Escherichia coli Ec86 retron complexes reveal architecture and defence mechanism

Abstract

First discovered in the 1980s, retrons are bacterial genetic elements consisting of a reverse transcriptase and a non-coding RNA (ncRNA). Retrons mediate antiphage defence in bacteria but their structure and defence mechanisms are unknown. Here, we investigate the Escherichia coli Ec86 retron and use cryo-electron microscopy to determine the structures of the Ec86 (3.1 Å) and cognate effector-bound Ec86 (2.5 Å) complexes. The Ec86 reverse transcriptase exhibits a characteristic right-hand-like fold consisting of finger, palm and thumb subdomains. Ec86 reverse transcriptase reverse-transcribes part of the ncRNA into satellite, multicopy single-stranded DNA (msDNA, a DNA-RNA hybrid) that we show wraps around the reverse transcriptase electropositive surface. In msDNA, both inverted repeats are present and the 3′ sides of the DNA/RNA chains are close to the reverse transcriptase active site. The Ec86 effector adopts a two-lobe fold and directly binds reverse transcriptase and msDNA. These findings offer insights into the structure–function relationship of the retron–effector unit and provide a structural basis for the optimization of retron-based genome editing systems.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Retron Ec86 genetic system and overall structure of the effector-bound Ec86 complex.
Fig. 2: Structure of Ec86 reverse transcriptase.
Fig. 3: Structure of Ec86 msDNA.
Fig. 4: Intermolecular interactions between retron-Ec86 reverse transcriptase and msDNA.
Fig. 5: Ec86 effector adopts a bilobed fold and directly interacts with msDNA.
Fig. 6: Ec86 effector–reverse transcriptase interactions and a proposed mechanistic model for the Ec86 system.

Similar content being viewed by others

Data availability

The atomic coordinates and EM density for the reported structures of the retron Ec86 complex (PDB: 7V9U; Electron Microscopy Data Bank (EMDB): EMD-31827) and the effector-bound Ec86 complex (PDB: 7XJG; EMDB: EMD-33226) have been deposited in the PDB (www.rcsb.org) and the EMDB (www.ebi.ac.uk/pdbe/emdb/). All data needed to evaluate the conclusions in the paper are shown in the article and/or the supplementary materials. Source data are provided with this paper. Additional data related to this paper may be requested from the authors.

References

  1. Yee, T., Furuichi, T., Inouye, S. & Inouye, M. Multicopy single-stranded DNA isolated from a gram-negative bacterium, Myxococcus xanthus. Cell 38, 203–209 (1984).

    Article  CAS  PubMed  Google Scholar 

  2. Dhundale, A., Lampson, B., Furuichi, T., Inouye, M. & Inouye, S. Structure of msDNA from Myxococcus xanthus: evidence for a long, self-annealing RNA precursor for the covalently linked, branched RNA. Cell 51, 1105–1112 (1987).

    Article  CAS  PubMed  Google Scholar 

  3. Furuichi, T., Dhundale, A., Inouye, M. & Inouye, S. Branched RNA covalently linked to the 5′ end of a single-stranded DNA in Stigmatella aurantiaca: structure of msDNA. Cell 48, 47–53 (1987).

    Article  CAS  PubMed  Google Scholar 

  4. Furuichi, T., Inouye, S. & Inouye, M. Biosynthesis and structure of stable branched RNA covalently linked to the 5′ end of multicopy single-stranded DNA of Stigmatella aurantiaca. Cell 48, 55–62 (1987).

    Article  PubMed  Google Scholar 

  5. Inouye, S., Hsu, M. Y., Eagle, S. & Inouye, M. Reverse transcriptase associated with the biosynthesis of the branched RNA-linked msDNA in Myxococcus xanthus. Cell 56, 709–717 (1989).

    Article  CAS  PubMed  Google Scholar 

  6. Lampson, B. C., Inouye, M. & Inouye, S. Reverse transcriptase with concomitant ribonuclease H activity in the cell-free synthesis of branched RNA-linked msDNA of Myxococcus xanthus. Cell 56, 701–707 (1989).

    Article  CAS  PubMed  Google Scholar 

  7. Lampson, B. C. et al. Reverse transcriptase in a clinical strain of Escherichia coli: production of branched RNA-linked msDNA. Science 243, 1033–1038 (1989).

    Article  CAS  PubMed  Google Scholar 

  8. Lim, D. & Maas, W. K. Reverse transcriptase-dependent synthesis of a covalently linked, branched DNA-RNA compound in E. coli B. Cell 56, 891–904 (1989).

    Article  CAS  PubMed  Google Scholar 

  9. Temin, H. M. Retrons in bacteria. Nature 339, 254–255 (1989).

    Article  CAS  PubMed  Google Scholar 

  10. Inouye, M. & Inouye, S. msDNA and bacterial reverse transcriptase. Annu. Rev. Microbiol. 45, 163–186 (1991).

    Article  CAS  PubMed  Google Scholar 

  11. Lampson, B. C., Inouye, M. & Inouye, S. Retrons, msDNA, and the bacterial genome. Cytogenet. Genome Res. 110, 491–499 (2005).

    Article  CAS  PubMed  Google Scholar 

  12. Inouye, M. & Inouye, S. Retroelements in bacteria. Trends Biochem. Sci. 16, 18–21 (1991).

    Article  CAS  PubMed  Google Scholar 

  13. Lampson, B. C., Inouye, S. & Inouye, M. msDNA of bacteria. Prog. Nucleic Acid Res. Mol. Biol. 40, 1–24 (1991).

    Article  CAS  PubMed  Google Scholar 

  14. Inouye, S. & Inouye, M. The retron: a bacterial retroelement required for the synthesis of msDNA. Curr. Opin. Genet. Dev. 3, 713–718 (1993).

    Article  CAS  PubMed  Google Scholar 

  15. Inouye, S. & Inouye, M. Structure, function, and evolution of bacterial reverse transcriptase. Virus Genes 11, 81–94 (1995).

    Article  CAS  PubMed  Google Scholar 

  16. Travisano, M. & Inouye, M. Retrons: retroelements of no known function. Trends Microbiol. 3, 209–211 (1995).

    Article  CAS  PubMed  Google Scholar 

  17. Sharon, E. et al. Functional genetic variants revealed by massively parallel precise genome editing. Cell 175, 544–557.e16 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Simon, A. J., Ellington, A. D. & Finkelstein, I. J. Retrons and their applications in genome engineering. Nucleic Acids Res. 47, 11007–11019 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Lopez, S. C., Crawford, K. D., Lear, S. K., Bhattarai-Kline, S. & Shipman, S. L. Precise genome editing across kingdoms of life using retron-derived DNA. Nat. Chem. Biol. 18, 199–206 (2022).

    Article  CAS  PubMed  Google Scholar 

  20. Farzadfard, F. & Lu, T. K. Genomically encoded analog memory with precise in vivo DNA writing in living cell populations. Science 346, 1256272 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Schubert, M. G. et al. High-throughput functional variant screens via in vivo production of single-stranded DNA. Proc. Natl Acad. Sci. USA 118, e2018181118 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Farzadfard, F., Gharaei, N., Citorik, R. J. & Lu, T. K. Efficient retroelement-mediated DNA writing in bacteria. Cell Syst. 12, 860–872.e5 (2021).

    Article  CAS  PubMed  Google Scholar 

  23. Zhao, B., Chen, S. A., Lee, J. & Fraser, H. B. Bacterial retrons enable precise gene editing in human cells. CRISPR J. 5, 31–39 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Kong, X. et al. Precise genome editing without exogenous donor DNA via retron editing system in human cells. Protein Cell 12, 899–902 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Bhattarai-Kline, S. et al. Recording gene expression order in DNA by CRISPR addition of retron barcodes. Nature 608, 217–225 (2022).

    Article  CAS  PubMed  Google Scholar 

  26. Gao, L. et al. Diverse enzymatic activities mediate antiviral immunity in prokaryotes. Science 369, 1077–1084 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Millman, A. et al. Bacterial retrons function in anti-phage defense. Cell 183, 1551–1561.e12 (2020).

    Article  CAS  PubMed  Google Scholar 

  28. Bobonis, J. et al. Bacterial retrons encode phage-defending tripartite toxin–antitoxin systems. Nature https://doi.org/10.1038/s41586-022-05091-4 (2022).

  29. Lampson, B. C., Viswanathan, M., Inouye, M. & Inouye, S. Reverse transcriptase from Escherichia coli exists as a complex with msDNA and is able to synthesize double-stranded DNA. J. Biol. Chem. 265, 8490–8496 (1990).

    Article  CAS  PubMed  Google Scholar 

  30. Jeong, D. W., Kim, K. & Lim, D. Evidence for the complex formation between reverse transcriptase and multicopy single-stranded DNA in retron EC83. Mol. Cells 7, 347–351 (1997).

    CAS  PubMed  Google Scholar 

  31. Palka, C., Fishman, C. B., Bhattarai-Kline, S., Myers, S. A. & Shipman, S. L. Retron reverse transcriptase termination and phage defense are dependent on host RNase H1. Nucleic Acids Res. 50, 3490–3504 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Gillis, A. J., Schuller, A. P. & Skordalakes, E. Structure of the Tribolium castaneum telomerase catalytic subunit TERT. Nature 455, 633–637 (2008).

    Article  CAS  PubMed  Google Scholar 

  33. Das, K., Martinez, S. E., Bandwar, R. P. & Arnold, E. Structures of HIV-1 RT-RNA/DNA ternary complexes with dATP and nevirapine reveal conformational flexibility of RNA/DNA: insights into requirements for RNase H cleavage. Nucleic Acids Res. 42, 8125–8137 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Stamos, J. L., Lentzsch, A. M. & Lambowitz, A. M. Structure of a thermostable group II intron reverse transcriptase with template-primer and its functional and evolutionary implications. Mol. Cell 68, 926–939.e4 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Martín-Alonso, S., Frutos-Beltrán, E. & Menéndez-Arias, L. Reverse transcriptase: from transcriptomics to genome editing. Trends Biotechnol. 39, 194–210 (2021).

    Article  PubMed  CAS  Google Scholar 

  36. Coffin, J. M. & Fan, H. The discovery of reverse transcriptase. Annu. Rev. Virol. 3, 29–51 (2016).

    Article  CAS  PubMed  Google Scholar 

  37. Inouye, S., Hsu, M. Y., Xu, A. & Inouye, M. Highly specific recognition of primer RNA structures for 2′-OH priming reaction by bacterial reverse transcriptases. J. Biol. Chem. 274, 31236–31244 (1999).

    Article  CAS  PubMed  Google Scholar 

  38. Inouye, M. et al. Complex formation between a putative 66-residue thumb domain of bacterial reverse transcriptase RT-Ec86 and the primer recognition RNA. J. Biol. Chem. 279, 50735–50742 (2004).

    Article  CAS  PubMed  Google Scholar 

  39. Fresco-Taboada, A. et al. 2′-Deoxyribosyltransferase from Bacillus psychrosaccharolyticus: a mesophilic-like biocatalyst for the synthesis of modified nucleosides from a psychrotolerant bacterium. Catalysts 8, 8 (2018).

    Article  CAS  Google Scholar 

  40. Armstrong, S. R., Cook, W. J., Short, S. A. & Ealick, S. E. Crystal structures of nucleoside 2-deoxyribosyltransferase in native and ligand-bound forms reveal architecture of the active site. Structure 4, 97–107 (1996).

    Article  CAS  PubMed  Google Scholar 

  41. Zhu, R. et al. Genetically encoded formaldehyde sensors inspired by a protein intra-helical crosslinking reaction. Nat. Commun. 12, 581 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Mestre, M. R., González-Delgado, A., Gutiérrez-Rus, L. I., Martínez-Abarca, F. & Toro, N. Systematic prediction of genes functionally associated with bacterial retrons and classification of the encoded tripartite systems. Nucleic Acids Res. 48, 12632–12647 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Harms, A., Brodersen, D. E., Mitarai, N. & Gerdes, K. Toxins, targets, and triggers: an overview of toxin–antitoxin biology. Mol. Cell 70, 768–784 (2018).

    Article  CAS  PubMed  Google Scholar 

  44. González-Delgado, A., Mestre, M. R., Martínez-Abarca, F. & Toro, N. Prokaryotic reverse transcriptases: from retroelements to specialized defense systems. FEMS Microbiol. Rev. 45, fuab025 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Hampton, H. G., Watson, B. N. J. & Fineran, P. C. The arms race between bacteria and their phage foes. Nature 577, 327–336 (2020).

    Article  CAS  PubMed  Google Scholar 

  46. Bernheim, A. & Sorek, R. The pan-immune system of bacteria: antiviral defence as a community resource. Nat. Rev. Microbiol. 18, 113–119 (2020).

    Article  CAS  PubMed  Google Scholar 

  47. Jung, H., Liang, J., Jung, Y. & Lim, D. Characterization of cell death in Escherichia coli mediated by XseA, a large subunit of exonuclease VII. J. Microbiol. 53, 820–828 (2015).

    Article  CAS  PubMed  Google Scholar 

  48. Punjani, A., Rubinstein, J. L., Fleet, D. J. & Brubaker, M. A. cryoSPARC: algorithms for rapid unsupervised cryo-EM structure determination. Nat. Methods 14, 290–296 (2017).

    Article  CAS  PubMed  Google Scholar 

  49. Chen, S. et al. High-resolution noise substitution to measure overfitting and validate resolution in 3D structure determination by single particle electron cryomicroscopy. Ultramicroscopy 135, 24–35 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Bepler, T. et al. Positive-unlabeled convolutional neural networks for particle picking in cryo-electron micrographs. Nat. Methods 16, 1153–1160 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Sanchez-Garcia, R. et al. DeepEMhancer: a deep learning solution for cryo-EM volume post-processing. Commun. Biol. 4, 874 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  52. Kucukelbir, A., Sigworth, F. J. & Tagare, H. D. Quantifying the local resolution of cryo-EM density maps. Nat. Methods 11, 63–65 (2014).

    Article  CAS  PubMed  Google Scholar 

  53. Wang, X. et al. Detecting protein and DNA/RNA structures in cryo-EM maps of intermediate resolution using deep learning. Nat. Commun. 12, 2302 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Pfab, J., Phan, N. M. & Si, D. DeepTracer for fast de novo cryo-EM protein structure modeling and special studies on CoV-related complexes. Proc. Natl Acad. Sci. USA 118, e2017525118 (2021).

    Article  CAS  PubMed  Google Scholar 

  55. Brown, A. et al. Tools for macromolecular model building and refinement into electron cryo-microscopy reconstructions. Acta Crystallogr. D Biol. Crystallogr. 71, 136–153 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Afonine, P. V. et al. Real-space refinement in PHENIX for cryo-EM and crystallography. Acta Crystallogr. D Struct. Biol. 74, 531–544 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Jumper, J. et al. Highly accurate protein structure prediction with AlphaFold. Nature 596, 583–589 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Williams, C. J. et al. MolProbity: more and better reference data for improved all-atom structure validation. Protein Sci. 27, 293–315 (2018).

    Article  CAS  PubMed  Google Scholar 

  59. Barad, B. A. et al. EMRinger: side chain-directed model and map validation for 3D cryo-electron microscopy. Nat. Methods 12, 943–946 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank the cryo-EM Facility of Hubei University for providing cryo-EM and computational support and the Center for Protein Research and Public Laboratory of Electron Microscopy, Huazhong Agricultural University, for technical support; X. Yan and J. Wang for help with cryo-EM data collection; Y. Wang and E. Sun for technical support with cloning and the phage plaque assays; J. Yan for technical assistance with the mass spectrometry experiments. We thank J. Li of the Mass Spectrometry System at the National Facility for Protein Science in Shanghai, Shanghai Advanced Research Institute, Chinese Academy of Science for data collection and analysis. This work was supported by funds from the National Key R&D Programme of China (nos. 2018YFA0507700, 2020YFA0908400), the National Natural Science Foundation of China (nos. 32070174, 31900930) and the Foundation of Hubei Hongshan Laboratory (no. 2021hszd013). Z.G. acknowledges the support provided by the National Postdoctoral Programme for Innovative Talents (no. BX2021108). Z.G., C.W. and Y.N. thank the BaiChuan fellowship of the College of Life Science and Technology, Huazhong Agricultural University, for funding support.

Author information

Authors and Affiliations

Authors

Contributions

T.Z. conceived the project. Y.W., Z.G., C.W., Y.N. and T.Z. designed the experiments. Y.W., Y.N., Y.Chen., Z.Q., Y.Cui., H.X., Q.W. and F.Z. performed the experiments. Q.W. and S.W. prepared the cryo-EM samples and collected the cryo-EM data. Z.G. determined the structures. All authors analysed the data and contributed to manuscript preparation. D.Z., P.T., M.S., P.Y. and S.J. contributed to the data analysis and discussion. Y.W., C.W. and T.Z. wrote the manuscript.

Corresponding authors

Correspondence to Shan Wu or Tingting Zou.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Microbiology thanks Martin Jinek, John van der Oost and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Purification of the Ec86 and effector-bound Ec86 complexes.

a, Purification of the Ec86 complex is indicated by a representative gel filtration chromatography, SDS-PAGE, and 12 % urea-PAGE. The peaks containing the target complex are illustrated by a black arrow and grey shadow. Fractions in lane 5 was used for cryo-EM sample preparation. b, Purification of the effector-bound Ec86 complex similar to the processes described in (a). Fractions in lane 6 was used for cryo-EM sample preparation. Lane 1, homemade DNA ladders. The msDNA (DNA-RNA hybrid) migrates slower than DNA. Images in (a) and (b) are representatives of three independent experiments.

Source data

Extended Data Fig. 2 Cryo-EM single particle analysis of the retron-Ec86 binary and retronEc86-NDT ternary complex.

a, Top panel, representative cryo-EM micrograph images of the Ec86 and effector-bound Ec86 complexes. Typical particles of the complex are marked by white circles. Bottom panel, flowchart for the cryo-EM data processing. See Methods for detailed information. b, Left panel, FSC curves between the cryo-EM density maps and the atomic models of the retron-Ec86 complex. Middle panel, angular distribution for the final reconstruction. Right panel, local map resolutions of the final structures. c, Left, FSC curves between the cryo-EM density maps and the atomic models of the retron-Ec86-NDT complex. Middle panel, angular distribution for the final reconstruction. Right panel, local map resolutions of the final structures.

Extended Data Fig. 3 Overall structure of the Ec86 complex and comparison with the effector-bound Ec86 complex.

a, Cryo-EM map and atomic model of the Ec86 complex in cartoon. msrRNA, burly wood; msdDNA, light green; RT, slate blue; IRs, gold. b, Superposition of effector-bound Ec86 with Ec86. Right panel, the close-up view of the conformational change of the DSL region.

Extended Data Fig. 4 In vitro and in vivo biochemical assays for the Ec86 and Ec86 defence unit.

a, Interaction interface between the two RT-msDNA protomers in the Ec86 complex. Top panel, atomic model of the Ec86 complex in cartoon. Bottom panel, close-up views of the interface illustrated by the box. b, The sequence alignment of Ec86 RT α1 region with the corresponding regions in Eco9 and Sen2 RTs. The blue asterisk illustrates the Ec86 RT R13 residue. c, Purification of the Ec86 msDNA-RTWT, Ec86 msDNA-RTR13A, Eco9-msDNA-RTWT and Sen2-msDNA-RTWT indicated by representative gel filtration chromatography. The absorbance at A280 (protein) and absorbance at A260 (nucleic acid) are indicated by solid line and dotted line, respectively. The shift of the elution peaks containing the target msDNA-RT complex is illustrated by gray shadows. The elution fractions corresponding to the gel filtration chromatography are subjected to SDS-PAGE and Coomassie brilliant blue staining. d, Elution peaks of the co-eluted nucleic acids are detected by 12 % urea-PAGE. e, The in vitro pull down of effector with wildtype or mutant Ec86 RTs. Images in (c-e) are representatives of three independent experiments. f, Serial dilution plaque assays shown for T5 phage on E. coli MG1655 strain transformed with plasmids encoding wild-type or mutated Ec86 systems. Images are representative of two replicates.

Source data

Extended Data Fig. 5 Superposition of Ec86 RT with other RTs.

a-d, Superposition of Ec86 RT with (a) LtrA of group IIA intron (PDB:5HHJ; RMSD = 5.4 Å), (b) RT of group IIC intron (GsI-IIC RT, PDB:6AR3; RMSD = 4.8 Å), (c) HIV-1 RT (PDB: 4PQU; RMSD = 5.3 Å) and (d) telomerase RT (TERT, PDB: 3DU5; RMSD = 4.3 Å). Palm domain, slate blue; fingers domain, cyan; thumb domain, violet; N-terminal extension (NTE), red; the insertion in fingers domain (IFD), light blue; DNA endonuclease (EN) domain, lime green; DNA binding (D) domain, pale yellow; connection, light pink; RNaseH, deep salmon; telomerase RNA-binding domain (TRBD), orange.

Extended Data Fig. 6 Sequence alignment of Ec86-RT with other retron RTs.

Seven universal reverse transcriptase regions (RT1-7) are indicated by black boxes. The secondary structural elements are labelled above the sequences. The general catalytic sites were illustrated by red solid squares. The conserved residues involving in RT-msDNA interaction were illustrated by orange stars.

Extended Data Fig. 7 RT-msDNA interactions in Ec86 complex.

Middle panel, overall structure of one Ec86 protomer. a, The X and Y regions in Ec86 RT. The X region (dodger blue) contains a long loop (between α4 and α5) and α5 and interacts with the RNA segment of DNA-RNA duplex and a short loop (between α5 and β3). The Y region (light sky blue) contains a long loop (between β6–α11) and α11. The conserved residues N105, A106, and H109 in X region and VTG (243-245) in Y region are close to the catalytic core YADD. b, Interaction between ssRb and the palm-finger domain. c, The interactions between ssDa region and palm domain. d, The interactions of ssDb with palm domain.

Extended Data Fig. 8 The IRs of msDNA.

a, Cryo-EM density map (grey mesh) of the IRa1-IRa2 dsRNA. b, The IR can be detected on the gel when the Ec86 complex was subjected to 12 % urea-PAGE. Lanes 1-6, RNA marker. The last three lanes (8-10) were merged as one lane. Image is a representative of two independent experiments.

Source data

Extended Data Fig. 9 Effector in the effector-bound Ec86 complex.

a, Schematic diagram of 6EVS-NDT, Ec86-effector and HxlR. The NDT domain and wHTH domain of Ec86-effector are shaded in yellow and pink, respectively. The wHTH domain of Ec86-effector are shaded in pink as the same as the wHTH domain of Ec86-effector. b, Alignment of the NDT domain from the Ec86-effector and BpNDT (PDB: 6EVS, RMSD of 4.984 over 120 Cα atoms). c, Alignment of the wHTH domain from the Ec86-effector and BsHxlR (PDB: 7BZG, RMSD of 5.427 over 80 Cα atoms).

Extended Data Fig. 10 Sequence alignment of the Ec86 effector NDT domain with other NDT domains.

The secondary structural elements are labelled above the sequences. The general catalytic sites were illustrated by red solid squares. Ec86, Ec73, Eco9, and Sen2 indicate the effector proteins from these retron systems. 6EVS and 1F8X indicate the PDB accession code of known NDT proteins.

Supplementary information

Supplementary Information

Cryo-EM data collection and refinement statistics.

Reporting Summary

Source data

Source Data Fig. 5

Unprocessed plate images.

Source Data Fig. 6

Unprocessed plate images.

Source Data Extended Data Fig. 1

Unprocessed SDS–PAGE and urea–PAGE gels.

Source Data Extended Data Fig. 4

Unprocessed SDS–PAGE and urea–PAGE gels and unprocessed plate images.

Source Data Extended Data Fig. 8

Unprocessed urea–PAGE gels.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Guan, Z., Wang, C. et al. Cryo-EM structures of Escherichia coli Ec86 retron complexes reveal architecture and defence mechanism. Nat Microbiol 7, 1480–1489 (2022). https://doi.org/10.1038/s41564-022-01197-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41564-022-01197-7

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology