Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Long-term potentiation of electrotonic coupling at mixed synapses

Abstract

LONG-TERM potentiation1,2 of chemical synapses is closely related to memory and learning3,4. Studies of this process have concentrated on chemically mediated excitatory synapses. By contrast, activity-dependent modification of gap junctions, which also widely exist in higher structures such as hippocampus and neocortex5, has not been described. Here we report that at mixed synapses between sensory afferents and an identified reticulospinal neuron, the electrotonic coupling potential can be potentiated, as well as the chemically mediated excitatory postsynaptic potential, for a prolonged time period using a stimulation paradigm like that which produces long-term potentiation in hippocampus. The effect on coupling is due to an increase in gap-junctional conductance. Our data indicate that the potentiation of both synaptic components requires an increase in intracellular calcium, involves activation of NMDA (N-methyl-D-aspartate) receptors, and is specific to the tetanized pathway.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Bliss, T. V. P. & Lomo, T. J. Physiol., Lond. 232, 311–356 (1973).

    Google Scholar 

  2. Lomo T. Acta Physiol. Scand. 68, (suppl. 277) 128 (1966).

    Google Scholar 

  3. Brown, T. H., Chapman, P. F., Kairiss, E. W. & Keenan, C. L. Science 242, 724–728 (1988).

    Article  ADS  CAS  Google Scholar 

  4. Gustafsson, B. & Wigstrom, H. Trends Neurosci. 11, 156–162 (1988).

    Article  CAS  Google Scholar 

  5. Dudek, F. E., Andrew, R. D., MacVicar, B. A., Snow, R. W. & Taylor, C. P. in Basic Mechanisms of Neuronal Hyperexcitability (eds Jasper, H. H. & Van Gelder, N. M.) 31–73 (Liss, New York, 1983).

    Google Scholar 

  6. Lin, J. W. & Faber, D. S. J. Neurosci. 8, 1302–1325 (1988).

    Article  CAS  Google Scholar 

  7. Wolszon, L. R. & Faber, D. S. Soc. Neurosci. Abst. 14, 939 (1988).

    Google Scholar 

  8. Fay, R. R. & Olsho, L. W. Comp. Biochem. Physiol. 62A, 377–386 (1979).

    Article  Google Scholar 

  9. Faber, D. S. & Korn, H. Neurobiology of the Mauthner Cell (eds Faber, D. S. & Korn, H.) 47–132 (Raven, New York, 1978).

    Google Scholar 

  10. Zottoli, S. J., Hordes, A. R. & Faber, D. S. Brain Res. 401, 113–121 (1987).

    Article  CAS  Google Scholar 

  11. Lynch, G., Larson, J., Kelso, S., Barrionuevo, G. & F. Schottler, Nature 305, 719–721 (1983).

    Article  ADS  CAS  Google Scholar 

  12. Malenka, R. C., Kauer, J. A., Perkel, D. J. & Nicoll, R. A. Trends Neurosci. 12, 444–450 (1989).

    Article  CAS  Google Scholar 

  13. Tsien, R. Y. Biochemistry 19, 2396–2404 (1980).

    Article  CAS  Google Scholar 

  14. Williams, S. & Johnson, D. Neuron 3, 583–588 (1989).

    Article  CAS  Google Scholar 

  15. Collingridge, G. L., Kehl, S. J. & McLennan, H. J. Physiol., Lond. 334, 33–46 (1983).

    Article  CAS  Google Scholar 

  16. Collingridge, G. L. & Bliss, T. V. B. Trends Neurosci. 10, 288–293 (1987).

    Article  CAS  Google Scholar 

  17. Zalutsky, R. A. & Nicoll, R. A. Science 248, 1619–1624 (1990).

    Article  ADS  CAS  Google Scholar 

  18. Ascher, P. & Nowak, L. J. Physiol., Lond. 399, 207–266 (1988).

    Article  CAS  Google Scholar 

  19. Mayer, M. L. & Westbrook, G. L. J. Physiol., Lond. 394, 501–528 (1987).

    Article  CAS  Google Scholar 

  20. Davies, J. et al. Brain Res. 382, 169–173 (1986).

    Article  ADS  CAS  Google Scholar 

  21. Harris, E. W., Ganong, A. H., Monaghan, D. T., Watkins, J. C. & Cotman, C. W. Brain Res. 382, 174–177 (1986).

    Article  CAS  Google Scholar 

  22. Anis, N. A., Berry, S. C., Burton, N. R. & Lodge, D. Br. J. Pharmac. 79, 565–575 (1983).

    Article  CAS  Google Scholar 

  23. Honey, C. R., Miljkovic, Z. & MacDonald, J. F. Neurosci. Lett. 61, 135–139 (1985).

    Article  CAS  Google Scholar 

  24. MacDonald, J. F., Miljkovic, Z. M. & Pennefather, P. J. Neurophysiol. 58, 251–266 (1987).

    Article  CAS  Google Scholar 

  25. Benoit, E., Carrutu, M. R., Dubois, J. M. & Mitolo-Chieppa, D. M. Br. J. Pharmac. 87, 281–297 (1986).

    Article  Google Scholar 

  26. D'Angelo, E., Rossi, P. & Garthwaite, J. Nature 346, 467–470 (1990).

    Article  ADS  CAS  Google Scholar 

  27. Loewenstein, W. R. Physiol. Rev. 61, 829–913 (1981).

    Article  CAS  Google Scholar 

  28. Zottoli, S. J. J. exp. Biol. 66, 243–254 (1979).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, XD., Korn, H. & Faber, D. Long-term potentiation of electrotonic coupling at mixed synapses. Nature 348, 542–545 (1990). https://doi.org/10.1038/348542a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/348542a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing