Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Direct femtosecond mapping of trajectories in a chemical reaction

Abstract

IN chemical reactions, the dynamics of the transition from reagents to products can be described by the trajectories of particles (or rigorously, of quantum mechanical wave packets) moving on a potential-energy surface. Here we use femtosecond pulsed laser techniques to follow directly the evolution in space and time of such trajectories during the breakage of a chemical bond in the dissociation of sodium iodide. The bond breakage can be described in terms of the time evolution of a single reaction coordinate, the internuclear separation. As the velocities of the separating fragments are typically of the order of a kilometre per second, a time resolution of a few tens of femtoseconds is required1,2 to view the motions on a molecular distance scale of less than an ångstrom. The resolution obtained here permits the direct visualization of the wave packet's motion and provides snapshots of the trajectories along the reaction coordinate.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Zewail, A. H. Science 242, 1645–1653 (1988).

    Article  CAS  ADS  Google Scholar 

  2. Khundkar, L. R. & Zewail, A. H. A Rev. phys. Chem. 41, 15–40 (1990).

    Article  CAS  ADS  Google Scholar 

  3. Rose, T. S., Rosker, M. J. & Zewail, A. H. J. chem. Phys. 88, 6672 (1988); 91, 7415–7436 (1989).

    Article  CAS  ADS  Google Scholar 

  4. Rosker, M. J., Rose, T. S. & Zewail, A. H. Chem. Phys. Lett. 146, 175 (1988).

    Article  CAS  ADS  Google Scholar 

  5. Atkins, P. W. Physical Chemistry 4th edn (Oxford University Press, New York, 1990).

    Google Scholar 

  6. Lee, S-Y., Pollard, W. T. & Mathies, R. A. J. chem. Phys. 90, 6146–6150 (1989).

    Article  CAS  ADS  Google Scholar 

  7. Engel, V., Metiu, H., Almeida, R., Marcus, R. A. & Zewail, A. H. Chem. Phys. Lett. 152, 1 (1988).

    Article  CAS  ADS  Google Scholar 

  8. Bernstein, R. B. & Zewail, A. H. J. chem. Phys. 90, 829–842 (1989).

    Article  CAS  ADS  Google Scholar 

  9. Rosker, M. J., Dantus, M. & Zewail, A. H. Science 241, 1200–1202 (1988).

    Article  CAS  ADS  Google Scholar 

  10. Bower, R. D. et al. J. chem. Phys. 89, 4478–4489 (1988).

    Article  CAS  ADS  Google Scholar 

  11. Cong, P., Mokhtari, A. & Zewail, A. H. Chem. Phys. Lett. 172, 109 (1990).

    Article  CAS  ADS  Google Scholar 

  12. Engel, V. & Metiu, H. J. chem. Phys. 91, 1596–1602 (1989).

    Article  CAS  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mokhtari, A., Cong, P., Herek, J. et al. Direct femtosecond mapping of trajectories in a chemical reaction. Nature 348, 225–227 (1990). https://doi.org/10.1038/348225a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/348225a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing