Letter | Published:

A downstream initiation element required for efficient TATA box binding and in vitro function of TFIID

Abstract

THE gfa gene encodes glial fibrillary acidic protein, an intermediate filament protein expressed in glial cells. In vitro transcription analysis has shown that the human gfa promoter contains two initiation elements that can independently specify the transcription startpoint1. One of the elements is a TATA box 25 base pairs (bp) upstream from the transcription startpoint; the other is located between 10 and 50 bp downstream from the transcription initiation site. We have now shown by transfection that both elements are required for efficient transcription in cultured cells. A partially purified natural human TATA box-binding factor (TFIID) from HeLa cells gave footprints that extended from upstream of the TATA box through the downstream initiator. Deletion of the downstream initiator inhibited both TFIID binding to the TATA box and transcription in vitro. In contrast to natural human TFIID, cloned human and yeast TFIIDs expressed in bacteria gave footprints covering only the TATA box region, although hypersensitive sites were observed in the downstream region. The cloned TFIIDs also showed less dependence than natural human TFIID on the downstream initiator for both TATA box binding and in vitro transcription. These results suggest that natural human TFIID contains an additional component(s) that contribute(s) to stable TFIID binding and effective transcription by interacting with the downstream initiator.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1

    Nakatani, Y., Brenner, M. & Freese, E. Proc. natn. Acad. Sci. U.S.A. 87, 4289–4293 (1990).

  2. 2

    Sawadogo, M. & Roeder, R. G. Cell 43, 165–175 (1985).

  3. 3

    Nakajima, N., Horikoshi, M. & Roeder, R. G. Molec. cell. Biol. 8, 4028–4040 (1988).

  4. 4

    Hoffmann, A. et al. Nature 346, 387–390 (1990).

  5. 5

    Horikoshi, M. et al. Nature 341, 299–303 (1989).

  6. 6

    Reinberg, D., Horikoshi, M. & Roeder, R. G. J. biol. Chem. 262, 3322–3330 (1987).

  7. 7

    Horikoshi, M. et al. Proc. natn. Acad. Sci. U.S.A. 86, 4843–4847 (1989).

  8. 8

    Smale, S. T. & Baltimore, D. Cell 57, 103–113 (1989).

  9. 9

    Means, A. L. & Farnham, P. J. Molec. cell Biol. 10, 653–661 (1990).

  10. 10

    Horikoshi, M., Carey, M. F., Kakidani, H. & Roeder, R. G. Cell 54, 665–669 (1988).

  11. 11

    Horikoshi, M., Hai, T., Lim, Y. S., Green, M. R. & Roeder, R. G. Cell 54, 1033–1042 (1988).

  12. 12

    Brenner, M. et al. Molec. Brain Res. 7, 277–286 (1990).

  13. 13

    Pfreundschuch, M. et al. Proc. natn. Acad. Sci. U.S.A. 75, 5122–5126 (1978).

  14. 14

    Gorman, C. M., Moffat, L. F. & Howard, B. H. Molec. cell. Biol. 2, 1044–1051 (1982).

  15. 15

    Wigler, M., Pellicer, A., Silverstein, S. & Axel, R. Cell 14, 725–731 (1978).

  16. 16

    Nordeen, S. K. Biotechniques 6, 454–457 (1988).

  17. 17

    de Wet, J. R., Wood, K. V., DeLuca, M., Helinski, D. R. & Subramani, S. Molec. cell. Biol. 7, 725–737 (1987).

Download references

Author information

Rights and permissions

Reprints and Permissions

About this article

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.