Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

A unified model of neutron-star magnetic fields

Abstract

STRONGLY magnetized neutron stars are believed to be at the heart of a number of astrophysical systems, notably pulsars and X-ray binaries. Although the magnetic field is an important determinant in the behaviour of such systems, the origin and stability of the field is the subject of conflicting observational and theoretical evidence. Here I describe a new model of neutron-star magnetic moments, by which the fields are generated as the neutron star is born, and follow the evolution of the field over a Hubble time. With realistic thermal evolution and conductivities, isolated neutron stars will maintain large magnetic fields for more than 1010 years. In addition, I show how mass accretion on to neutron stars can reduce the field strength1,2. This model of field generation and decay can explain a wide variety of observed systems.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Taam, R. E. & van den Heuvel, E. P. J. Astrophys. J. 305, 235–245 (1986).

    Article  ADS  CAS  Google Scholar 

  2. Shibazaki, N., Murakami, T., Shaham, J. & Nomoto, K. Nature 342, 656–658 (1989).

    Article  ADS  Google Scholar 

  3. Narayan, R. & Ostriker, J. P. Astrophys. J. 352, 222–246 (1990).

    Article  ADS  Google Scholar 

  4. Blandford, R. D., Applegate, J. H. & Hernquist, L. Mon. Not. R. astr. Soc. 204, 1025–1048 (1983).

    Article  ADS  CAS  Google Scholar 

  5. Lyne, A. G., Manchester, R. N. & Taylor, J. H. Mon. Not R. astr. Soc. 213, 613–639 (1985).

    Article  ADS  Google Scholar 

  6. Kulkarni, S. R. Astrophys. J. 306, L85–L89 (1986).

    Article  ADS  CAS  Google Scholar 

  7. Murakami, T. et al. Nature 335, 234–235 (1988).

    Article  ADS  Google Scholar 

  8. Baym, G., Pethick, C. & Pines, D. Nature 224, 674–67 (1969).

    Article  ADS  Google Scholar 

  9. Sang, Y. & Chanmugan, G. Astrophys. J. 323, L61–L64 (1987).

    Article  ADS  Google Scholar 

  10. Tsuruta, S. Proc. 13th Texas Symp. on Relativistic Astrophysics (ed. Ulmer, M.) 499–503 (World Scientific, Singapore, 1987).

    Google Scholar 

  11. Hernquist, L. & Applegate, J. H. Astrophys. J. 287, 244–254 (1984).

    Article  ADS  Google Scholar 

  12. Baym, G., Pethick, C. J. & Sutherland, P. Astrophys. J. 170, 299–317 (1971).

    Article  ADS  CAS  Google Scholar 

  13. Buchler, J. R. & Barkat, Z. Astrophys. Lett. 7, 167–170 (1971).

    ADS  CAS  Google Scholar 

  14. Shibazaki, N. & Lamb, R. K. Astrophys. J. 346, 808–822 (1989).

    Article  ADS  CAS  Google Scholar 

  15. Ostriker, J. P. & Gunn, J. E. Astrophys. J. 157, 1395–1417 (1969).

    Article  ADS  Google Scholar 

  16. Flowers, E. & Itoh, N. Astrophys. J. 206, 218–241 (1976).

    Article  ADS  CAS  Google Scholar 

  17. Yakovlev, D. G. & Urpin, V. A. Soviet Astr. 24, 303–310 (1980).

    ADS  Google Scholar 

  18. Flowers, E. & Ruderman, M. A. Astrophys. J. 215, 302–310 (1977).

    Article  ADS  CAS  Google Scholar 

  19. Blandford, R. D. & Romani, R. W. Mon. Not R. astr. Soc. 234, 57P–60P (1988).

    Article  ADS  Google Scholar 

  20. Bailes, M. Astrophys. J. 342, 917–927 (1989).

    Article  ADS  Google Scholar 

  21. de Kool, M. & van Paradijs, J. Astr. Astrophys. 173, 279–283 (1986).

    ADS  Google Scholar 

  22. Romani, R. W. Astrophys. J. 357, 493–501 (1990).

    Article  ADS  Google Scholar 

  23. Blondin, J. M. & Freese, K. Nature 323, 786–788 (1986).

    Article  ADS  Google Scholar 

  24. Ghosh, P. & Lamb, F. K. Astrophys. J. 234, 296–316 (1979).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Romani, R. A unified model of neutron-star magnetic fields. Nature 347, 741–743 (1990). https://doi.org/10.1038/347741a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/347741a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing