Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Determination of the equation of state from nuclear experiments and neutron star observations

Abstract

With recent advances in neutron star observations, major progress has been made in determining the pressure of neutron star matter at high density. This pressure is constrained by the neutron star deformability, as determined from gravitational waves emitted in a neutron star merger, and measurements of the radii of two neutron stars made using the Neutron Star Interior Composition Explorer X-ray observatory on the International Space Station. Previous studies have relied on nuclear theory calculations to provide the equation of state at low density. Here we use a combination of 15 constraints composed of three astronomical observations and 12 nuclear experimental constraints that extend over a wide range of densities. Bayesian inference is then used to obtain a comprehensive nuclear equation of state. This data-centric result provides benchmarks for theoretical calculations and modelling of nuclear matter and neutron stars. Furthermore, it provides insights into the composition of neutron stars and their cooling due to neutrino radiation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Constraints from nuclear experiments and astronomy observations with their corresponding sensitive densities.
Fig. 2: Constraints on and posteriors of the nuclear EOS and neutron star.
Fig. 3: Predictions on the proton fraction and the Urca cooling.
Fig. 4: Energy and pressure of symmetry energy, symmetric matter and pure neutron matter.

Similar content being viewed by others

Data availability

All data points used in this work are listed in Table 1 together with the references. They are also plotted in Fig. 2.

Code availability

Analysis codes specially written for this work are available online at https://github.com/nscl-hira/TidalPolarizabilityPublic. The TOV solver used in this work is available upon request to the corresponding author.

References

  1. Lattimer, J. M. & Prakash, M. The physics of neutron stars. Science 304, 536–542 (2004).

    ADS  CAS  PubMed  Google Scholar 

  2. Dietrich, T. et al. Multimessenger constraints on the neutron-star equation of state and the Hubble constant. Science 370, 1450–1453 (2020).

    ADS  MathSciNet  CAS  PubMed  Google Scholar 

  3. Hen, O. From nuclear clusters to neutron stars. Science 371, 232–232 (2021).

    ADS  CAS  PubMed  Google Scholar 

  4. Abbott, B. P. et al. Multi-messenger observations of a binary neutron star merger. Astrophys. J. Lett. 848, L12 (2017).

    ADS  Google Scholar 

  5. Abbott, B. P. et al. GW170817: observation of gravitational waves from a binary neutron star inspiral. Phys. Rev. Lett. 119, 161101 (2017).

    ADS  CAS  PubMed  Google Scholar 

  6. Riley, T. E. et al. A NICER view of PSR J0030+0451: millisecond pulsar parameter estimation. Astrophys. J. Lett. 887, L21 (2019).

    ADS  CAS  Google Scholar 

  7. Miller, M. C. et al. PSR J0030+0451 mass and radius from NICER data and implications for the properties of neutron star matter. Astrophys. J. 887, L24 (2019).

    ADS  CAS  Google Scholar 

  8. Riley, T. E. et al. A NICER view of the massive pulsar PSR J0740+6620 informed by radio timing and XMM-Newton spectroscopy. Astrophys. J. Lett. 918, L27 (2021).

    ADS  CAS  Google Scholar 

  9. Miller, M. C. et al. The radius of PSR J0740+6620 from NICER and XMM-Newton data. Astrophys. J. Lett. 918, L28 (2021).

    ADS  CAS  Google Scholar 

  10. Legred, I., Chatziioannou, K., Essick, R., Han, S. & Landry, P. Impact of the PSR J0740 + 6620 radius constraint on the properties of high-density matter. Phys. Rev. D 104, 063003 (2021).

    ADS  CAS  Google Scholar 

  11. Abbott, B. P. et al. GW170817: measurements of neutron star radii and equation of state. Phys. Rev. Lett. 121, 161101 (2018).

    ADS  CAS  PubMed  Google Scholar 

  12. Danielewicz, P., Lacey, R. & Lynch, W. G. Determination of the equation of state of dense matter. Science 298, 1592–1596 (2002).

    ADS  CAS  PubMed  Google Scholar 

  13. Le Fevre, A., Leifels, Y., Reisdorf, W., Aichelin, J. & Hartnack, C. Constraining the nuclear matter equation of state around twice saturation density. Nucl. Phys. A 945, 112–133 (2016).

    ADS  Google Scholar 

  14. Dutra, M. et al. Skyrme interaction and nuclear matter constraints. Phys. Rev. C 85, 035201 (2012).

    ADS  Google Scholar 

  15. Zhang, Z. & Chen, L.-W. Electric dipole polarizability in 208Pb as a probe of the symmetry energy and neutron matter around ρ0/3. Phys. Rev. C 92, 031301 (2015).

    ADS  Google Scholar 

  16. Adhikari, D. et al. Accurate determination of the neutron skin thickness of 208Pb through parity-violation in electron scattering. Phys. Rev. Lett. 126, 172502 (2021).

    ADS  CAS  PubMed  Google Scholar 

  17. Reed, B. T., Fattoyev, F. J., Horowitz, C. J. & Piekarewicz, J. Implications of PREX-2 on the equation of state of neutron-rich matter. Phys. Rev. Lett. 126, 172503 (2021).

    ADS  CAS  PubMed  Google Scholar 

  18. Brown, B. A. Constraints on the Skyrme equations of state from properties of doubly magic nuclei. Phys. Rev. Lett. 111, 232502 (2013).

    ADS  PubMed  Google Scholar 

  19. Kortelainen, M. et al. Nuclear energy density optimization: large deformations. Phys. Rev. C 85, 024304 (2012).

    ADS  Google Scholar 

  20. Danielewicz, P., Singh, P. & Lee, J. Symmetry energy III: isovector skins. Nucl. Phys. A 958, 147–186 (2017).

    ADS  CAS  Google Scholar 

  21. Tsang, M. B. et al. Constraints on the density dependence of the symmetry energy. Phys. Rev. Lett. 102, 122701 (2009).

    ADS  CAS  PubMed  Google Scholar 

  22. Morfouace, P. et al. Constraining the symmetry energy with heavy-ion collisions and Bayesian analyses. Phys. Lett. B 799, 135045 (2019).

    CAS  Google Scholar 

  23. Estee, J. et al. Probing the symmetry energy with the spectral pion ratio. Phys. Rev. Lett. 126, 162701 (2021).

    ADS  CAS  PubMed  Google Scholar 

  24. Cozma, M. Feasibility of constraining the curvature parameter of the symmetry energy using elliptic flow data. Eur. Phys. J. A 54, 1–23 (2018).

    CAS  Google Scholar 

  25. Russotto, P. et al. Symmetry energy from elliptic flow in 197Au + 197Au. Phys. Lett. B 697, 471–476 (2011).

    ADS  CAS  Google Scholar 

  26. Russotto, P. et al. Results of the ASY-EOS experiment at GSI: the symmetry energy at suprasaturation density. Phys. Rev. C 94, 034608 (2016).

    ADS  Google Scholar 

  27. Miller, M. C., Chirenti, C. & Lamb, F. K. Constraining the equation of state of high-density cold matter using nuclear and astronomical measurements. Astrophys. J. 888, 12 (2019).

    ADS  Google Scholar 

  28. Lynch, W. & Tsang, M. Decoding the density dependence of the nuclear symmetry energy. Phys. Lett. B 830, 137098 (2022).

    CAS  Google Scholar 

  29. Tsang, M. B. et al. Isospin diffusion and the nuclear symmetry energy in heavy ion reactions. Phys. Rev. Lett. 92, 062701 (2004).

    ADS  CAS  PubMed  Google Scholar 

  30. Tsang, M. B. et al. Constraints on the symmetry energy and neutron skins from experiments and theory. Phys. Rev. C 86, 015803 (2012).

    ADS  Google Scholar 

  31. Drischler, C., Hebeler, K. & Schwenk, A. Chiral interactions up to next-to-next-to-next-to-leading order and nuclear saturation. Phys. Rev. Lett. 122, 042501 (2019).

    ADS  CAS  PubMed  Google Scholar 

  32. Drischler, C., Hebeler, K. & Schwenk, A. Asymmetric nuclear matter based on chiral two- and three-nucleon interactions. Phys. Rev. C 93, 054314 (2016).

    ADS  Google Scholar 

  33. Adamczewski-Musch, J. et al. Directed, elliptic, and higher order flow harmonics of protons, deuterons, and tritons in Au + Au collisions at \(\sqrt{{s}_{NN}}=2.4\,{\rm{GeV}}\). Phys. Rev. Lett. 125, 262301 (2020).

    ADS  CAS  PubMed  Google Scholar 

  34. Abdallah, M. S. et al. Flow and interferometry results from Au + Au collisions at \(\sqrt{{s}_{NN}}=4.5\,{\rm{GeV}}\). Phys. Rev. C 103, 034908 (2021).

    ADS  CAS  Google Scholar 

  35. Abdallah, M. S. et al. Disappearance of partonic collectivity in \(\sqrt{{s}_{\rm{NN}}}=3\,{\rm{GeV}}\) Au + Au collisions at RHIC. Phys. Lett. B 827, 137003 (2022).

    CAS  Google Scholar 

  36. Abbott, B. P., Abbott, R., Abbott, T. D. & Abraham, S. et al. GW190425: observation of a compact binary coalescence with total mass ~ 3.4 M. Astrophys. J. Lett. 892, L3 (2020).

    ADS  CAS  Google Scholar 

  37. Fonseca, E. et al. Refined mass and geometric measurements of the high-mass PSR J0740+6620. Astrophys. J. Lett. 915, L12 (2021).

    ADS  CAS  Google Scholar 

  38. Cromartie, H. T. et al. Relativistic Shapiro delay measurements of an extremely massive millisecond pulsar. Nat. Astron. 4, 72–76 (2020).

    ADS  Google Scholar 

  39. Tsang, C. Y., Tsang, M. B., Danielewicz, P., Lynch, W. G. & Fattoyev, F. J. Impact of the neutron-star deformability on equation of state parameters. Phys. Rev. C 102, 045808 (2020).

    ADS  CAS  Google Scholar 

  40. Tolman, R. C. Static solutions of Einstein’s field equations for spheres of fluid. Phys. Rev. 55, 364–373 (1939).

    ADS  Google Scholar 

  41. Oppenheimer, J. R. & Volkoff, G. M. On massive neutron cores. Phys. Rev. 55, 374–381 (1939).

    ADS  CAS  Google Scholar 

  42. Baym, G., Pethick, C. & Sutherland, P. The ground state of matter at high densities: equation of state and stellar models. Astrophys. J. 170, 299 (1971).

    ADS  CAS  Google Scholar 

  43. Huth, S. et al. Constraining neutron-star matter with microscopic and macroscopic collisions. Nature 606, 276–280 (2022).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  44. Lattimer, J. M., Pethick, C. J., Prakash, M. & Haensel, P. Direct Urca process in neutron stars. Phys. Rev. Lett. 66, 2701–2704 (1991).

    ADS  CAS  PubMed  Google Scholar 

  45. Page, D., Lattimer, J. M., Prakash, M. & Steiner, A. W. Minimal cooling of neutron stars: a new paradigm. Astrophys. J. Suppl. Ser. 155, 623 (2004).

    ADS  CAS  Google Scholar 

  46. Brown, E. F. et al. Rapid neutrino cooling in the neutron star MXB 1659-29. Phys. Rev. Lett. 120, 182701 (2018).

    ADS  CAS  PubMed  Google Scholar 

  47. Shternin, P. S., Yakovlev, D. G., Heinke, C. O., Ho, W. C. G. & Patnaude, D. J. Cooling neutron star in the Cassiopeia A supernova remnant: evidence for superfluidity in the core. Mon. Not. R. Astron. Soc. 412, L108–L112 (2011).

    ADS  Google Scholar 

  48. Capano, C. D. et al. Stringent constraints on neutron-star radii from multimessenger observations and nuclear theory. Nat. Astron. 4, 625 (2020).

    ADS  Google Scholar 

  49. Ghosh, S., Chatterjee, D. & Schaffner-Bielich, J. Imposing multi-physics constraints at different densities on the neutron star equation of state. Eur. Phys. J. A 58, 37 (2022).

    ADS  CAS  Google Scholar 

  50. Drischler, C., Furnstahl, R. J., Melendez, J. A. & Phillips, D. R. How well do we know the neutron-matter equation of state at the densities inside neutron stars? A Bayesian approach with correlated uncertainties. Phys. Rev. Lett. 125, 202702 (2020).

    ADS  CAS  PubMed  Google Scholar 

  51. Drischler, C., Melendez, J. A., Furnstahl, R. J. & Phillips, D. R. Quantifying uncertainties and correlations in the nuclear-matter equation of state. Phys. Rev. C 102, 054315 (2020).

    ADS  CAS  Google Scholar 

  52. Sorensen, A. et al. Dense nuclear matter equation of state from heavy-ion collisions. Prog. Part. Nucl. Phys. https://doi.org/10.1016/j.ppnp.2023.104080 (2022).

  53. Li, B.-A., Chen, L.-W. & Ko, C. M. Recent progress and new challenges in isospin physics with heavy-ion reactions. Phys. Rep. 464, 113–281 (2008).

    ADS  CAS  Google Scholar 

  54. Margueron, J., Hoffmann Casali, R. & Gulminelli, F. Equation of state for dense nucleonic matter from metamodeling. I. Foundational aspects. Phys. Rev. C 97, 025805 (2018).

    ADS  CAS  Google Scholar 

  55. Dutra, M. et al. Relativistic mean-field hadronic models under nuclear matter constraints. Phys. Rev. C 90, 055203 (2014).

    ADS  Google Scholar 

  56. Adamczewski-Musch, J. et al. Proton, deuteron and triton flow measurements in Au + Au collisions at \(\sqrt{{s}_{{{{\rm{NN}}}}}}=2.4\,{\rm{GeV}}\). Eur. Phys. J. A 59, 80 (2023).

    ADS  CAS  Google Scholar 

  57. Pinkenburg, C. et al. Elliptic flow: transition from out-of-plane to in-plane emission in Au + Au collisions. Phys. Rev. Lett. 83, 1295–1298 (1999).

    ADS  CAS  Google Scholar 

  58. Liu, H. et al. Sideward flow in Au + Au collisions between 2A and 8A GeV. Phys. Rev. Lett. 84, 5488–5492 (2000).

    ADS  CAS  PubMed  Google Scholar 

  59. Oliinychenko, D., Sorensen, A., Koch, V. & McLerran, L. Sensitivity of Au + Au collisions to the symmetric nuclear matter equation of state at 2–5 nuclear saturation densities. Phys. Rev. C 108, 034908 (2023).

    ADS  CAS  Google Scholar 

  60. Bayes, T. & Price, R. An essay towards solving a problem in the doctrine of chance. By the late Rev. Mr. Bayes, communicated by Mr. Price, in a letter to John Canton, A. M. F. R. S. Philos. Trans. R. Soc. Lond. 53, 370–418 (1763).

    Google Scholar 

Download references

Acknowledgements

We would like to acknowledge many stimulating discussions with the participants at the workshops sponsored by the Institute of Nuclear Theory in 2021 and 2022 and with members of the Transport Model Evaluation Project. We are grateful to C. Drischler for providing the χEFT calculations shown in our figures. This work is supported in part by the National Science Foundation (Grant No. PHY-2209145 to R.K., W.G.L., C.Y.T. and M.B.T.) and the US Department of Energy, Office of Science, Office of Nuclear Physics (Grant No. DE-FG02-87ER40365 to C.J.H.). The Facility for Radioactive Ion Beams (FRIB), funded by the US Department of Energy, is committed to fostering a safe, diverse, equitable and inclusive work and research environment in which respect and personal integrity are valued. We adhere to the FRIB research code of conduct in accordance with the highest scientific, professional and ethical standards, as detailed in https://frib.msu.edu/users/pac/conduct.html. In an ideal world, it should not be necessary to identify the authors by gender or from under-represented group. Until the ideal world is reached, we acknowledge that our references and citations most likely under-represent contributions from women and minorities. We further acknowledge that Michigan State University occupies the ancestral, traditional and contemporary lands of the Anishinaabeg and the Three Fires Confederacy of the Ojibwe, Odawa and Potawatomi peoples. In particular, the university resides on land ceded in the 1819 Treaty of Saginaw.

Author information

Authors and Affiliations

Authors

Contributions

C.Y.T. and M.B.T. first conceived the project. C.Y.T. wrote the software for the Bayesian analysis. C.Y.T., M.B.T. and W.G.L. collected and evaluated all the constraints used in the analysis. R.K. researched, reviewed and validated the final set of constraints adopted in Table 1. R.K. also wrote some of the software codes used to analyse the Bayesian results and generated all the figures with data. C.J.H. contributed to the impact of the Urca cooling section. All authors contributed to the writing, editing and revising of the manuscript. The ordering of the authors reflects the length of time the authors have joined the project.

Corresponding author

Correspondence to ManYee Betty Tsang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Astronomy thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1 and 2 and Table 1.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tsang, C.Y., Tsang, M.B., Lynch, W.G. et al. Determination of the equation of state from nuclear experiments and neutron star observations. Nat Astron 8, 328–336 (2024). https://doi.org/10.1038/s41550-023-02161-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41550-023-02161-z

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing