Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Bis-methionine axial ligation of haem in bacterioferritin from Pseudomonas aeruginosa

Abstract

THE iron-containing bacterioferritins1–6 contain the protoporphyrin IX haem group5. It has been established that Escherichia coli cytochrome b1, cytochrome b557 and bacterioferritin are identical7. The optical spectra at room temperature of the haem group show it to be predominantly low-spin in both the ferrous and ferric states8. The nature of the axial ligands binding the haem group to the polypeptide has, however, remained unknown. Low-spin, bis-coordinate haem centres in proteins typically have a role in rapid electron transfer as redox changes at the metal ion lead to little structural rearrangement9. There are only four amino acids with side-chains that have ligand field strengths sufficient to generate the low-spin state of haem, namely, histidine, lysine, methionine and cysteine. Hence there are, potentially, ten different pairs of these four ligands which could be discovered in electron transferhaemoproteins. To date only three have been established with certainty. They are bis-histidine, as in mammalian cytochrome b5 (ref. 10), methionine-histidine, typified by cytochrome c (ref. 11) and lysine-histidine, recently recognized by spectroscopic methods in cytochrome f (ref. 12). Here we report the electron paramagnetic resonance and near infrared magnetic circular dichroism spectra of the oxidized state of Ps. aeruginosa bacterioferritin which enable the axial ligands to be identified as the thioether side chains of two methionine residues, a ligation scheme not previously reported for haem in any protein.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Ford, G. C. et al. Phil. Trans. R. Soc. B304, 551–565 (1984).

    Article  CAS  Google Scholar 

  2. Laulhere, J. P., Lescurie, A. M. & Briat, J. F. J. biol. Chem. 263, 10289–10294 (1988).

    CAS  Google Scholar 

  3. Yariv, J. et al. Biochem. J. 197, 171–175 (1981).

    Article  CAS  Google Scholar 

  4. Stiefel, E. I. & Watt, G. D. Nature 279, 81–83 (1979).

    Article  ADS  CAS  Google Scholar 

  5. Moore, G. R., Mann, S. & Bannister, J. V. J. Inorg. Biochem. 28, 329–336 (1986).

    Article  CAS  Google Scholar 

  6. Smith, J. M. A., Ford, G. C. & Harrison, P. M. Biochem. Soc. Trans. 16, 836–838 (1988).

    Article  CAS  Google Scholar 

  7. Smith, J. M. A., Quirk, A. V., Plank, R. W. H., Diffin, F. M., Ford, G. C. & Harrison, P. M. Biochem. J. 255, 737–740 (1988).

    Article  CAS  Google Scholar 

  8. Moore, G. R. Biochem. J. 227, 341–342 (1985).

    Article  CAS  Google Scholar 

  9. Moore, G. R. & Pettigrew, G. W. Cytochromes c: Evolutionary, Structural and Physico-chemical Aspects 370–372 (Springer, New York, Heidelberg, 1990).

    Book  Google Scholar 

  10. Mathews, F. S. Prog. Biophys. molec. Biol. 45, 1–56 (1985).

    Article  CAS  Google Scholar 

  11. Dickerson, R. E. & Timkovich, R. The Enzymes 3rd edn, Vol. 11 (ed. Boyer, P. D.) 397–547 (Academic. London, 1975).

    Google Scholar 

  12. Rigby, S. E. J. et al. Biochem. J. 256, 571–577 (1988).

    Article  CAS  Google Scholar 

  13. Gadsby, P. M. A. & Thomson, A. J. J. Amer. chem. Soc. 112, 5003–5011 (1990).

    Article  CAS  Google Scholar 

  14. Smith, D. W. & Williams, R. J. P. Struct. Bonding 7, 1–45 (1970).

    Article  CAS  Google Scholar 

  15. Cheng, J. C., Osborne, G. A., Stephens, P. J. & Eaton, W. A. Nature 241, 193–194 (1973).

    Article  ADS  CAS  Google Scholar 

  16. Sievers, G., Gadsby, P. M. A., Peterson, J. & Thomson, A. J., Biochim. biophys. Acta 742, 637–647 (1983).

    Article  CAS  Google Scholar 

  17. Moore, G. R., Williams, R. J. P., Peterson, J., Thomson, A. J. & Mathews, F. S. Biochim. biophys. Acta 829, 83–96 (1985).

    Article  CAS  Google Scholar 

  18. Mashiko, T., Reed, C. A., Haller, K. J., Kastner, M. E. & Scheidt, W. R. J. Am. chem. Soc. 103, 5758–5767 (1981).

    Article  CAS  Google Scholar 

  19. Andrews, S. C., Smith, J. M. A., Guest, J. R. & Harrison, P. M. Biochem. biophys. Res. Commun. 158, 489–496 (1989).

    Article  CAS  Google Scholar 

  20. Smith, J. M. A., Ford, G. C., Harrison, P. M., Yariv, J. & Kalb A. J. J. molec. Biol. 205, 465–467 (1989).

    Article  CAS  Google Scholar 

  21. Harrison, P. M. et al. in Proteins of Iron Storage and Transport (eds Spik, G. et al.) 67–79 (Elsevier, Amsterdam, 1985).

    Google Scholar 

  22. Lederer, F., Glatigany, A., Bethge, P. H., Bellamy, H. D. & Mathews, F. S. J. molec. Biol. 148, 427–448 (1981).

    Article  CAS  Google Scholar 

  23. Weber, P. C., Howard, A., Xuong, N. G. H. & Salemme, F. R. J. molec. Biol. 153, 399–424 (1981).

    Article  CAS  Google Scholar 

  24. Kurokawa, T., Fukumori, Y. & Yamamoka, T., Biochem. biophys. Acta 976, 135–139 (1989).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cheesman, M., Thomson, A., Greenwood, C. et al. Bis-methionine axial ligation of haem in bacterioferritin from Pseudomonas aeruginosa. Nature 346, 771–773 (1990). https://doi.org/10.1038/346771a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/346771a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing