Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Complete reduction of carbon dioxide to carbon using cation-excess magnetite


THE reduction of gaseous oxides such as CO2 and H2O is an important concern in industrial processes and pollution control. Here we report the reduction of carbon dioxide to carbon with an efficiency of nearly 100% at 290 °C using cation-excess magnetite (Fe3+δO4, δ =0.127). In this reaction, the oxygen in the CO2 is transferred, in the form of O2−, to the cation-excess magnetite, and no gas is evolved. The carbon in the CO2 is reduced to carbon (zero valence) by the addition of an electron donated from the cation-excess magnetite to maintain electrical neutrality during the transfer of the O2− to the magnetite. When we used H2O in place of CO2, hydrogen gas was evolved, indicating that the same mechanism can also reduce H2O.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.


  1. 1

    Smith, J. & Wijin, J. I. J. Ferrite, 136 (Philips Technical Library, Tokyo, 1965).

    Google Scholar 

  2. 2

    Kiyama, M. Bull. chem. Soc. Japan 47, 1646–1650 (1974).

    CAS  Article  Google Scholar 

  3. 3

    Katsura, T. & Tamaura, Y. Bull. chem. Soc. Japan 52, 96–100 (1979).

    CAS  Article  Google Scholar 

  4. 4

    Annersten, H. & Hafner, S. S. Z. Kristallogr. 137, 321–340 (1973).

    CAS  Google Scholar 

  5. 5

    Volenik, K., Seberiai, M. & Neid, J. Czech. J. Phys. B25, 1063–1071 (1975).

    ADS  Article  Google Scholar 

  6. 6

    Topsøe, H., Dumesic, J. A. & Boudart, M. J. Phys., Paris C6, 411–413 (1974).

    Google Scholar 

  7. 7

    JCPDS card 19-629 (Joint Committee on Powder Diffraction Standards, Swarthmore, 1989).

  8. 8

    Dieckmann, R. Ber. Bunsenges, phys. Chem. 86, 112–118 (1982).

    CAS  Article  Google Scholar 

  9. 9

    Dieckmann, R. & Schmalzried, H. Ber. Bunsenges. phys. Chem. 81, 414–419 (1977).

    CAS  Article  Google Scholar 

  10. 10

    Darken, L. S. & Gurry, R. W. J. Am. chem. Soc. 67, 1398–1412 (1945).

    ADS  CAS  Article  Google Scholar 

  11. 11

    Darken, L. S. & Gurry, R. W. J. Am. chem. Soc. 68, 798–816 (1945).

    ADS  Article  Google Scholar 

  12. 12

    Copperthwaite, R. G., Davies, P. R., Morris, M. A., Roberts, M. W. & Ryder, R. A. Catal. Lett. 1, 11–19 (1988).

    CAS  Article  Google Scholar 

  13. 13

    Manning, M. P. & Reid, R. C. ASME Pap. 75-ENAS-22 (Am. Soc. mech. Engineers, 1975).

  14. 14

    Wagner, R. C., Carrasquillo, R., Edwards, J. & Holmes, R. 18th Intersoc. Conf. Environmental Systems, SAE Tech. Pap. Ser. 880995, 1–9 (Soc. Automotive Engineers, 1988).

  15. 15

    Iwasaki, I. et al. Bull. volc. Soc. Japan, Ser. II 5, 9–24 (1960).

    CAS  Google Scholar 

Download references

Author information



Rights and permissions

Reprints and Permissions

About this article

Cite this article

Tamaura, Y., Tahata, M. Complete reduction of carbon dioxide to carbon using cation-excess magnetite. Nature 346, 255–256 (1990).

Download citation

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing