Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Tellurium in pre-solar diamonds as an indicator for rapid separation of supernova ejecta

Abstract

Carbon-rich ‘carbonaceous’ meteorites contain several types of dust grains with an isotopic signature that identifies them as being of pre-solar origin1,2,3. Of these grains, diamonds are of particular interest: such grains are by far the most abundant, and they host an isotopically anomalous ‘Xe-H’ component (characterized by a relative overabundance of the heaviest stable isotopes of xenon) which constitutes a notable fraction of the total amount of xenon in unprocessed ‘primitive’ meteorites. The isotope abundance ratios of this Xe-H cannot be accounted for by the canonical processes responsible for nucleosynthesis of the elements heavier than iron. An ad hoc neutron-capture process has been postulated4,5,6 to explain the observed isotope abundance ratios, but it has also been pointed out that standard ‘r-process’ nucleosynthesis (in supernovae) could work if the stable isotopes were somehow separated from their radioactive precursors in the first few hours after the explosion7. One way to distinguish between these mechanisms is to determine anomalies correlated for the heavy stable isotopes of tellurium in pre-solar diamond grains. Here we report such measurements, which support the suggestion that the isotopes were separated: the competing neutron-capture process cannot produce the observed abundances.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Tellurium isotopic composition measured in pre-solar diamonds extracted from the Allende meteorite.
Figure 2: Three-isotope plot of 130Te/128Te against 124Te/128Te.
Figure 3: Comparison of isotopic composition of Te-H, as derived here, with predictions of models.
Figure 4: Schemes for the decay of radioactive r-process precursors into stable 128Te and 130Te (ref. 22).

Similar content being viewed by others

References

  1. Ott, U. Interstellar grains in meteorites. Nature 364, 25–33 (1993).

    Article  ADS  CAS  Google Scholar 

  2. Anders, E. & Zinner, E. Interstellar grains in primitive meteorites: diamond, silicon carbide, and graphite. Meteoritics 28, 490–514 (1993).

    Article  ADS  CAS  Google Scholar 

  3. Zinner, E. Presolar material in meteorites: an overview. Proc. Astrophysical Implications of the Laboratory Study of Presolar Materials(AIP Conf. Ser., in the press).

  4. Heymann, D. & Dziczkaniec, M. Xenon from intermediate zones of supernovae. Proc. Lunar Planet. Sci. Conf. X, 1943–1959 (1979).

    ADS  Google Scholar 

  5. Clayton, D. D. Origin of heavy xenon in meteoritic diamonds. Astrophys. J. 340, 613–619 (1989).

    Article  ADS  CAS  Google Scholar 

  6. Howard, W. M., Meyer, B. S. & Clayton, D. D. Heavy-element abundances from a neutron burst that produces Xe-H. Meteoritics 27, 404–412 (1992).

    Article  ADS  CAS  Google Scholar 

  7. Ott, U. Interstellar diamond xenon and time scales of supernova ejecta. Astrophys. J. 463, 344–348 (1996).

    Article  ADS  CAS  Google Scholar 

  8. Beer, H., Corvi, F. & Mutti, P. Neutron capture of the bottleneck isotopes 138Ba and 208Pb, s-process studies, and the r-process abundance distribution. Astrophys. J. 474, 843–861 (1997).

    Article  ADS  CAS  Google Scholar 

  9. Reynolds, J. H. & Turner, G. Rare gases in the chondrite Renazzo. J. Geophys. Res. 69, 3263–3281 (1964).

    Article  ADS  CAS  Google Scholar 

  10. Huss, G. R. & Lewis, R. S. Noble gases in presolar diamonds I: Three distinct components and their implications for diamond origins. Meteoritics 29, 791–810 (1994).

    Article  ADS  CAS  Google Scholar 

  11. Clayton, D. D. Principles of Stellar Evolution and Nucleosynthesis (Univ. Chicago Press, (1983).

    Google Scholar 

  12. Kosaza, T., Hasegawa, H. & Nomoto, K. Formation of dust grains in the ejecta of SN 1987A. II. Astron. Astrophys. 249, 474–482 (1991).

    ADS  Google Scholar 

  13. Haas, M. R. et al. Velocity-resolved far-infrared spectra of [Fe II]: evidence for mixing and clumping in SN 1987A. Astrophys. J. 360, 257–266 (1990).

    Article  ADS  CAS  Google Scholar 

  14. Chevalier, R. A. Supernova 1987A at five years of age. Nature 355, 691–696 (1992).

    Article  ADS  Google Scholar 

  15. Wachsmann, M. & Heumann, K. G. Negative thermal ionization mass spectrometry of main group elements Part 2. 6th group. Int. J. Mass. Spectrom. Ion Proc. 114, 209–220 (1992).

    Article  ADS  CAS  Google Scholar 

  16. Kratz, K.-L., Bitouzet, J.-P., Thielemann, F.-K., Möller, P. & Pfeiffer, B. Isotopic r-process abundances and nuclear structure far from stability: implications for the r-process mechanism. Astrophys. J. 403, 216–238 (1993).

    Article  ADS  CAS  Google Scholar 

  17. Wasserburg, G. J., Busso, M. & Gallino, R. Abundances of actinides and short-live nonactinides in the interstellar medium: diverse supernova sources for the r-process. Astrophys. J. 466, L109–L112 (1996).

    Article  ADS  CAS  Google Scholar 

  18. Käppeler, F., Beer, H. & Wisshak, K. S-process nucleosynthesis — nuclear physics and the classical model Rep. Progr. Phys. 52, 945–1013 (1989).

    Article  ADS  Google Scholar 

  19. Amari, S., Lewis, R. S. & Anders, E. Interstellar grains in meteorites: I. Isolation of SiC, graphite, and diamond; size distributions of SiC and graphite. Geochim. Cosmochim. Acta 58, 459–470 (1994).

    Article  ADS  CAS  Google Scholar 

  20. Richter, S., Ott, U. & Begemann, F. Multiple ion counting in isotope abundance mass spectrometry. Int. J. Mass. Spectrom. Ion Proc. 136, 91–100 (1994).

    Article  ADS  CAS  Google Scholar 

  21. Heumann, K. G., Schindlmeier, W., Zeininger, H. & Schmidt, M. Application of an economical and small thermal ionization mass spectrometer for accurate anion trace analyses. Fresenius Z. Anal. Chem. 320, 457–462 (1985).

    Article  CAS  Google Scholar 

  22. Firestone, R. B. Table of Isotopes (Wiley, New York, (1996)).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to U. Ott.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Richter, S., Ott, U. & Begemann, F. Tellurium in pre-solar diamonds as an indicator for rapid separation of supernova ejecta. Nature 391, 261–263 (1998). https://doi.org/10.1038/34605

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/34605

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing