Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

A field experiment to test whether organic acids buffer acid deposition

Abstract

THE role of organic acids in surface-water acidification is a matter of recent controversy1–8. It has been suggested1,4–6 that lakes and streams in the northeastern United States and southern Scandinavia that have high mineral acidity resulting from acid deposition had, before acid deposition, high concentrations of dissolved organic carbon (DOC) and were acidified by natural organic acids. The suggestion is that deposition of strong mineral acids has been buffered by concurrent losses in organic acids and DOC4–6, resulting in little or no overall change in pH. Despite considerable debate6–8 and comparative analyses of lake chemistry2,7, this hypothesis has never been tested experimentally in the field. Here we present results from an experimental acidification of a brown-water stream that tests two of the major elements of the hypothesis. We find that DOC concentrations are not reduced by acidification, and that the organic acid–base system has only a very limited capacity to buffer inputs of strong mineral acids. In addition, mineral acids mobilize toxic forms of aluminium.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Krug, E. C. & Frink, C. R. Science 221, 520–525 (1983).

    Article  ADS  CAS  Google Scholar 

  2. Gorham, E. et al. Nature 324, 451–453 (1986).

    Article  ADS  CAS  Google Scholar 

  3. Brakke, D. F., Henriksen, A. & Norton, S. A. Nature 329, 432–434 (1987).

    Article  ADS  CAS  Google Scholar 

  4. Krug, E. C. Assessment of the Theory and Hypotheses of the Acidification of Watersheds, Rep. 457 (Illinois State Water Survey Division, Champaign, 1989).

    Book  Google Scholar 

  5. Davis, R. B., Anderson, D. S. & Berge, F. Nature 316, 436–438 (1985).

    Article  ADS  CAS  Google Scholar 

  6. Krug, E. C. Nature 334, 571 (1988).

    Article  ADS  CAS  Google Scholar 

  7. Brakke, D. F., Henriksen, A. & Norton, S. A. Nature 335, 305 (1988).

    Article  ADS  CAS  Google Scholar 

  8. Johnson, N. M. et al. Science 225, 1424–1425 (1984).

    Article  ADS  CAS  Google Scholar 

  9. McDowell, W. H. thesis, Cornell Univ. (1982).

  10. Hall, R. J. et al. Limnol. Oceanogr. 30, 212–220 (1985).

    Article  ADS  CAS  Google Scholar 

  11. Henriksen, A. et al. Water Res. 22, 1069–1073 (1988).

    Article  CAS  Google Scholar 

  12. Norton, S. A. et al. in Acidification and Water Pathways Vol. 1, 249–258 (Norwegian Natn. Comm. Hydrology, Oslo, 1987).

    Google Scholar 

  13. Perdue, E. M., Reuter, J. H. & Parrish, R. S. Geochim. cosmochim. Acta. 48, 1257–1263 (1984).

    Article  ADS  CAS  Google Scholar 

  14. Kramer, J. R. & Davies, S. S. Envir. Sci. Technol. 22, 182–185 (1988).

    Article  ADS  CAS  Google Scholar 

  15. Likens, G. E. et al. Tellus (in the press).

  16. Semb, A. & Dovland, H. Wat. Air & Soil Pollut. 30, 5–16 (1986).

    Article  ADS  CAS  Google Scholar 

  17. Driscoll, C. T. Int. J. Envir. Analyt. Chem. 16, 267–284 (1984).

    Article  CAS  Google Scholar 

  18. Schecher, W. D. & Driscoll, C. T. Wat Resour. Res. 23, 525–534 (1987).

    Article  ADS  CAS  Google Scholar 

  19. Driscoll, C. T., Fuller, R. D. & Schecher, W. D. Wat. Air & Soil Pollut. 43, 21–40 (1989).

    Article  ADS  CAS  Google Scholar 

  20. Krug, E. C. & Isaacson, P. J. Soil Sci. 137, 370–378 (1984).

    Article  ADS  CAS  Google Scholar 

  21. McColl, J. G. & Pohlman, A. A. Wat. Air & Soil. Pollut. 31, 917–927 (1986).

    Article  ADS  CAS  Google Scholar 

  22. Fuller, R. D., Simone D. M. & Driscoll, C. T. Wat. Air & Soil Pollut. 40, 185–195 (1988).

    CAS  Google Scholar 

  23. Likens, G. E. et al. Ecol. Monogr. 40, 23–47 (1970).

    Article  Google Scholar 

  24. Lawrence, G. B., Fuller R. D. & Driscoll, C. T. J. Envir. Qual. 16, 383–390 (1987).

    Article  CAS  Google Scholar 

  25. Fuller, R. D. et al. Nature 325, 707–710 (1987).

    Article  ADS  CAS  Google Scholar 

  26. McDowell, W. H., Cole, J. J. & Driscoll, C. T. Can. J. Fish. aquat. Sci. 44, 214–218 (1987).

    Article  CAS  Google Scholar 

  27. McAvoy, D. C. et al. J. Soil Sci. Am. (in the press).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hedin, L., Likens, G., Postek, K. et al. A field experiment to test whether organic acids buffer acid deposition. Nature 345, 798–800 (1990). https://doi.org/10.1038/345798a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/345798a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing