Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Drosophila Shaking-B protein forms gap junctions in paired Xenopus oocytes

Abstract

In most multicellular organisms direct cell–cell communication is mediated by the intercellular channels of gap junctions. These channels allow the exchange of ions and molecules that are believed to be essential for cell signalling during development and in some differentiated tissues. Proteins called connexins, which are products of a multigene family, are the structural components of vertebrate gap junctions1,2. Surprisingly, molecular homologues of the connexins have not been described in any invertebrate. A separate gene family, which includes the Drosophila genes shaking-B and l(1)ogre, and the Caenorhabditis elegans genes unc-7 and eat-5, encodes transmembrane proteins with a predicted structure similar to that of the connexins3,4,5,6,7,8,9. shaking-B and eat-5 are required for the formation of functional gap junctions8,10. To test directly whether Shaking-B is a channel protein, we expressed it in paired Xenopus oocytes. Here we show that Shaking-B localizes to the membrane, and that its presence induces the formation of functional intercellular channels. To our knowledge, this is the first structural component of an invertebrate gap junction to be characterized.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: shak-B RNA is translated in the Xenopus oocyte expression system.
Figure 2: Shak-B(lethal) but not Shak-B(neural) protein forms voltage-sensitive intercellular channels in paired oocytes.
Figure 3: Shak-B(neural) protein is located in the region of cell–cell contact of RNA-injected paired oocytes.

Similar content being viewed by others

References

  1. Bruzzone, R., White, T. W. & Paul, D. L. Connections with connexins: the molecular basis of direct intercellular signalling. Eur. J. Biochem. 238, 1–27 (1996).

    Article  CAS  Google Scholar 

  2. Kumar, N. M. & Gilula, N. B. The gap junction communication channel. Cell 84, 381–388 (1996).

    Article  CAS  Google Scholar 

  3. Crompton, D., Todman, M., Wilkin, M., Ji, S. & Davies, J. Essential and neural transcripts from the Drosophila shaking-B locus are differentially expressed in the embryonic mesoderm and pupal nervous system. Dev. Biol. 170, 142–158 (1995).

    Article  CAS  Google Scholar 

  4. Krishnan, S. N., Frei, E., Swain, G. P. & Wyman, R. J. Passover: a gene required for synaptic connectivity in the giant fibre system of Drosophila. Cell 73, 967–977 (1993).

    Article  CAS  Google Scholar 

  5. Krishnan, S. N., Frei, E., Schalet, A. P. & Wyman, R. J. Molecular basis of intracistronic complementation in the Passover locus of Drosophila. Proc. Natl Acad. Sci. USA 92, 2021–2025 (1995).

    Article  ADS  CAS  Google Scholar 

  6. Watanabe, T. & Kankel, D. R. Molecular cloning and analysis of l (1) ogre, a locus of Drosophila melanogaster with prominent effects on the postembryonic development of the central nervous system. Genetics 126, 1033–1044 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Starich, T. A., Herman, R. K. & Shaw, J. E. Molecular and genetic analysis of unc-7, a Caenorhabditis elegans gene required for coordinated locomotion. Genetics 133, 527–541 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Starich, T. A., Lee, R. Y. N., Panzarella, C., Avery, L. & Shaw, J. E. eat-5 and unc-7 represent a multigene family in Caenorhabditis elegans involved in cell–cell coupling. J. Cell Biol. 134, 537–548 (1996).

    Article  CAS  Google Scholar 

  9. Barnes, T. M. OPUS: a growing family of gap junction proteins? Trends Genet. 10, 303–305 (1994).

    Article  CAS  Google Scholar 

  10. Phelan, P. et al. Mutations in shaking-B prevent electrical synapse formation in the Drosophila giant fibre system. J. Neurosci. 16, 1101–1113 (1996).

    Article  CAS  Google Scholar 

  11. Homyk, T., Szidonya, J. & Suzuki, D. T. Behavioral mutants of Drosophila melanogaster III. Isolation and mapping of mutations by direct visual observations of behavioral phenotypes. Mol. Gen. Genet. 177, 553–565 (1980).

    Article  Google Scholar 

  12. Thomas, J. B. & Wyman, R. J. Mutations altering synaptic connectivity between identified neurons in Drosophila. J. Neurosci. 4, 530–538 (1984).

    Article  CAS  Google Scholar 

  13. Willecke, K. & Haubrich, S. Connexin expression systems: To what extent do they reflect the situation in the animal? J. Bioenerg. Biomembr. 28, 319–326 (1996).

    Article  CAS  Google Scholar 

  14. Barrio, L. C. et al. Gap junctions formed by connexins 26 and 32 alone and in combination are differently affected by applied voltage. Proc. Natl Acad. Sci. USA 88, 8410–8414 (1991).

    Article  ADS  CAS  Google Scholar 

  15. Hennemann, H. et al. Two gap junction genes, connexin 31.1 and 30.3, are closely linked on mouse chormosome 4 and preferentially expressed in skin. J. Biol. Chem. 267, 17225–17233 (1992).

    CAS  PubMed  Google Scholar 

  16. Swenson, K. I., Jordan, J. R., Beyer, E. C. & Paul, D. L. Formation of gap junctions by expression of connexins in Xenopus oocyte pairs. Cell 57, 145–155 (1989).

    Article  CAS  Google Scholar 

  17. Bruzzone, R., White, T. W. & Paul, D. L. Expression of chimeric connexins reveals new properties of the formation and gating behavior of gap junction channels. J. Cell Sci. 107, 955–967 (1994).

    CAS  PubMed  Google Scholar 

  18. Wilders, R. & Jongsma, H. J. Limitations of the dual voltage clamp method in assaying conductance and kinetics of gap junction channels. Biophys. J. 63, 942–953 (1992).

    Article  ADS  CAS  Google Scholar 

  19. Ebihara, L., Beyer, E. C., Swenson, K. I., Paul, D. L. & Goodenough, D. A. Cloning and expression of a Xenopus embryonic gap junction protein. Science 243, 1194–1195 (1989).

    Article  ADS  CAS  Google Scholar 

  20. Verselis, V. K., Bennett, M. V. L. & Bargiello, T. A. Avoltage-dependent gap junction in Drosophila melanogaster. Biophys. J. 59, 114–126 (1991).

    Article  ADS  CAS  Google Scholar 

  21. Gho, M. Voltage-clamp analysis of gap junctions between embryonic muscles in Drosophila. J. Physiol. (Lond.) 481, 371–383 (1994).

    Article  CAS  Google Scholar 

  22. Bruzzone, R., White, T. W., Yoshizaki, G., Patino, R. & Paul, D. L. Intercellular channels in teleosts: functional characterization of two connexins from Atlantic croaker. FEBS Lett. 385, 301–304 (1995).

    Article  Google Scholar 

  23. Chevalier, S., Tassan, J.-P., Cox, R., Phillipe, M. & Ford, C. Both cdk2 and cdc2 proteins promote S phase initiation in frog egg extracts. J. Cell Sci. 108, 1831–1841 (1995).

    CAS  PubMed  Google Scholar 

  24. Colman, A. in Transcription and Translation—A Practical Approach (ed. Hames, B. D. & Higgins, S. J.) 271–302 (IRL, Oxford, (1984)).

    Google Scholar 

  25. Hausen, P. & Dreyer, C. The use of polyacrylamide as an embedding medium for immunohistochemical studies of embryonic tissues. Stain Technol. 56, 287–293 (1981).

    Article  CAS  Google Scholar 

  26. Spray, D. C., Harris, A. L. & Bennett, M. V. L. Equilibrium properties of a voltage-dependent junctional conductance. J. Gen. Physiol. 77, 77–93 (1981).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank H. Woodland for the pSPJC2L vector, and E. Jones, S. King, M. O'Shea, D. Paul, M. Stern, M. Todman and M. Yeoman for help, advice and discussion. This work was funded by the BBSRC, UK.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pauline Phelan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Phelan, P., Stebbings, L., Baines, R. et al. Drosophila Shaking-B protein forms gap junctions in paired Xenopus oocytes. Nature 391, 181–184 (1998). https://doi.org/10.1038/34426

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/34426

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing