Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

The role of strain energy in creep graphitization of anthracite

Abstract

RECENT research on ceramics and natural minerals has demonstrated that non-hydrostatic stress can affect some polymorphic transitions and can increase reaction rates1,2. One such example is the graphitization of anthracite. Under natural conditions graphite forms at temperatures of 300–500° C and confining pressures of 500 MPa (refs 3–9). But in simple heating experiments at ambient pressure and high confining pressure (up to 1 GPa), temperatures of 2,000 °C are required for graphite formation10–13. Here we report creep experiments on natural anthracite at temperatures of 300–600 °C, using variable strains and strain rates and a constant confining pressure of 500 MPa. The experiments yield an apparent activation energy of 68.6 kJ mol-1 for the steady-state process(es) leading to graphite formation. This value is in marked contrast with simple heating experiments, which require an activation energy of 1,000 kJ mol-1 (ref. 10). We suggest that in our experiments, and also under natural conditions, graphitization is facilitated by available strain energy associated with non-hydrostatic stress; such stresses typify conditions of natural graphitization.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Poirier, J.-P. Creep of crystals (Cambridge University Press, London, 1985).

    Book  Google Scholar 

  2. Snow, E. & Yund, R. A. J. metamorphic Geol. 5, 141–153 (1987).

    Article  ADS  CAS  Google Scholar 

  3. Franklin, R. E. Proc. R. Soc. 209, 196–218 (1951).

    ADS  CAS  Google Scholar 

  4. Evans, E. L., Jenkins, J. L. & Thomas, J. M. Carbon 10, 637–642 (1972).

    Article  CAS  Google Scholar 

  5. Diessel, C. F. K., Brothers, R. N. & Black, P. M. Contr. Miner. Petrol. 68, 63–78 (1978).

    Article  ADS  CAS  Google Scholar 

  6. Deurbergue, A., Oberlin, A., Oh, J.-H. & Rouzaud, J. N. Int. J. Coal Geol. 8, 375–393 (1987).

    Article  CAS  Google Scholar 

  7. Oh, J.-H. thesis. Univ. d'Orléans (1987).

  8. Landis, C. A. Contr. Miner. Petrol. 30, 34–45 (1971).

    Article  ADS  CAS  Google Scholar 

  9. Okuyama-Kusunose, Y. & Itaya, T. J. metamorphic Geol. 5, 121–139 (1987).

    Article  ADS  CAS  Google Scholar 

  10. Bonijoly, M., Oberlin, M. & Oberlin, A. Int. J. Coal Geol. 1, 283–313 (1982).

    Article  CAS  Google Scholar 

  11. Noda, T. & Kato, H. Carbon 3, 289–297 (1965).

    Article  CAS  Google Scholar 

  12. Oberlin, A. Carbon 22, 521–541 (1984).

    Article  CAS  Google Scholar 

  13. Rouzaud, J. N. thesis, Univ. Orléans (1984).

  14. Green, H. W., Griggs, D. T. & Christie, J. M. in Experimental and Natural Rock Deformation (ed. Paulitsch, P.) 272–335 (Springer, New York, 1970).

    Google Scholar 

  15. Heard, H. C. Geol. Soc. Am. Mem. 79, 193–244 (1960).

    CAS  Google Scholar 

  16. Heard, H. C. & Raleigh, C. B. Geol. Soc. Am. Bull. 83, 935–956 (1972).

    Article  ADS  Google Scholar 

  17. Carter, N. L. Rev. Geophys. Space Phys. 14, 301–360 (1976).

    Article  ADS  CAS  Google Scholar 

  18. Parrish, D. K., Krivz, A. & Carter, N. L. Tectonophysics 32, 183–207 (1976).

    Article  ADS  Google Scholar 

  19. Bustin, R. M., Ross, J. V. & Moffat, I. Int. J. Coal Geol. 6, 343–351 (1986).

    Article  Google Scholar 

  20. Rubie, D. C. & Thompson, A. B. Adv. phys. Geochem. 4, 27–79 (1985).

    CAS  Google Scholar 

  21. Poirier, J.-P. J. geophys. Res. 87, 6791–6797 (1982).

    Article  ADS  Google Scholar 

  22. Petrovich, R. Geochim. cosmochlm. Acta 45, 1665–1674 (1981).

    Article  ADS  CAS  Google Scholar 

  23. Gillet, P. & Madon, M. Bull. Miner. 105, 590–597 (1982).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ross, J., Bustin, R. The role of strain energy in creep graphitization of anthracite. Nature 343, 58–60 (1990). https://doi.org/10.1038/343058a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/343058a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing