Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Amorphous shear bands in crystalline materials as drivers of plasticity

Abstract

Traditionally, the formation of amorphous shear bands in crystalline materials has been undesirable, because shear bands can nucleate voids and act as precursors to fracture. They also form as a final stage of accumulated damage. Only recently were shear bands found to form in undefected crystals, where they serve as the primary driver of plasticity without nucleating voids. Here we have discovered trends in materials properties that determine when amorphous shear bands will form and whether they will drive plasticity or lead to fracture. We have identified the materials systems that exhibit shear-band deformation, and by varying the composition, we were able to switch from ductile to brittle behaviour. Our findings are based on a combination of experimental characterization and atomistic simulations, and they provide a potential strategy for increasing the toughness of nominally brittle materials.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Visualization of shear bands in simulated uniaxial tension.
Fig. 2: Microscopy analysis of shear bands after indentation.
Fig. 3: Micro-pillar compression tests of Al2Sm and Al3Sm.
Fig. 4: Key properties to determine the shear-band behaviours.
Fig. 5: Measured mechanical properties of Al2Sm and Al3Sm.

Similar content being viewed by others

Data availability

Experimental data that support the results of this work are available at the following link: https://drive.google.com/drive/folders/16zsS_jBFdIwUaJo2euQgYRjgxYpSYfwT?usp=sharing. Simulation data that support the results of this work are available from the corresponding authors upon reasonable request. Source data are provided with this paper.

References

  1. Greer, A. L., Cheng, Y. Q. & Ma, E. Shear bands in metallic glasses. Mater. Sci. Eng. R Rep. 74, 71–132 (2013).

    Google Scholar 

  2. Li, B., Li, A., Zhao, S. & Meyers, M. Amorphization by mechanical deformation. Mater. Sci. Eng. R Rep. 149, 100673 (2022).

    Google Scholar 

  3. Idrissi, H., Carrez, P. & Cordier, P. On amorphization as a deformation mechanism under high stresses. Curr. Opin. Solid State Mater. Sci. 26, 100976 (2022).

    Google Scholar 

  4. Reddy, K. M., Liu, P., Hirata, A., Fujita, T. & Chen, M. W. Atomic structure of amorphous shear bands in boron carbide. Nat. Commun. 4, 2483 (2013).

    Google Scholar 

  5. Chen, M., McCauley, J. W. & Hemker, K. J. Shock-induced localized amorphization in boron carbide. Science 299, 1563–1566 (2003).

    CAS  Google Scholar 

  6. Zhao, S. et al. Shock-induced amorphization in silicon carbide. Acta Mater. 158, 206–213 (2018).

    CAS  Google Scholar 

  7. Zhu, R., Zhou, J., Jiang, H. & Zhang, D. Evolution of shear banding in fully dense nanocrystalline Ni sheet. Mech. Mater. 51, 29–42 (2012).

    CAS  Google Scholar 

  8. Jonnalagadda, K., Karanjgaokar, N., Chasiotis, I., Chee, J. & Peroulis, D. Strain rate sensitivity of nanocrystalline Au films at room temperature. Acta Mater. 58, 4674–4684 (2010).

    CAS  Google Scholar 

  9. Odeshi, A. G., Al-ameeri, S., Mirfakhraei, S., Yazdani, F. & Bassim, M. N. Deformation and failure mechanism in AISI 4340 steel under ballistic impact. Theor. Appl. Fract. Mech. 45, 18–24 (2006).

    CAS  Google Scholar 

  10. Ikeda, Y., Mancias, J., Gan, B. & Maaß, R. Evidence of room-temperature shear-deformation in a Cu-Al intermetallic. Scr. Mater. 190, 126–130 (2021).

    CAS  Google Scholar 

  11. Greer, A. L., Castellero, A., Madge, S. V., Walker, I. T. & Wilde, J. R. Nanoindentation studies of shear banding in fully amorphous and partially devitrified metallic alloys. Mater. Sci. Eng. A 375–377, 1182–1185 (2004).

    Google Scholar 

  12. Bei, H., Xie, S. & George, E. P. Softening caused by profuse shear banding in a bulk metallic glass. Phys. Rev. Lett. 96, 105503 (2006).

    CAS  Google Scholar 

  13. Perepezko, J. H., Imhoff, S. D., Chen, M. W., Wang, J. Q. & Gonzalez, S. Nucleation of shear bands in amorphous alloys. Proc. Natl Acad. Sci. USA 111, 3938–3942 (2014).

    CAS  Google Scholar 

  14. An, Q. & Goddard, W. A. III Atomistic origin of brittle failure of boron carbide from large-scale reactive dynamics simulations: suggestions toward improved ductility. Phys. Rev. Lett. 115, 105501 (2015).

    Google Scholar 

  15. Guo, D. et al. Grain boundary sliding and amorphization are responsible for the reverse Hall-Petch relation in superhard nanocrystalline boron carbide. Phys. Rev. Lett. 121, 145504 (2018).

    CAS  Google Scholar 

  16. Zhao, S. et al. Directional amorphization of boron carbide subjected to laser shock compression. Proc. Natl Acad. Sci. USA 113, 12088–12093 (2016).

    CAS  Google Scholar 

  17. Zhao, S. et al. Amorphization and nanocrystallization of silicon under shock compression. Acta Mater. 103, 519–533 (2016).

    CAS  Google Scholar 

  18. Zhao, S. et al. Generating gradient germanium nanostructures by shock-induced amorphization and crystallization. Proc. Natl Acad. Sci. USA 114, 9791–9796 (2017).

    CAS  Google Scholar 

  19. Yang, Y. et al. Adiabatic shear bands on the titanium side in the titanium/mild steel explosive cladding interface: experiments, numerical simulation, and microstructure evolution. Metall. Mater. Trans. A 37, 3131–3137 (2006).

    Google Scholar 

  20. Xu, Y. et al. Shear localization and recrystallization in dynamic deformation of 8090 Al–Li alloy. Mater. Sci. Eng. A 299, 287–295 (2001).

    Google Scholar 

  21. Xu, Y., Zhang, J., Bai, Y. & Meyers, M. A. Shear localization in dynamic deformation: microstructural evolution. Metall. Mater. Trans. A 39, 811–843 (2008).

    Google Scholar 

  22. Luo, H. et al. Plasticity without dislocations in a polycrystalline intermetallic. Nat. Commun. 10, 3587 (2019).

    Google Scholar 

  23. Idrissi, H. et al. On the formation mechanisms of intragranular shear bands in olivine by stress-induced amorphization. Acta Mater. 239, 118247 (2022).

    CAS  Google Scholar 

  24. Samae, V. et al. Stress-induced amorphization triggers deformation in the lithospheric mantle. Nature 591, 82–86 (2021).

    CAS  Google Scholar 

  25. Bokas, G. B. et al. Synthesis of Sm–Al metallic glasses designed by molecular dynamics simulations. J. Mater. Sci. 53, 11488–11499 (2018).

    CAS  Google Scholar 

  26. Bokas, G. B., Zhao, L., Perepezko, J. H. & Szlufarska, I. On the role of Sm in solidification of Al–Sm metallic glasses. Scr. Mater. 124, 99–102 (2016).

    CAS  Google Scholar 

  27. Rong, C. et al. Self-nanoscaling of the soft magnetic phase in bulk SmCo/Fe nanocomposite magnets. J. Mater. Sci. 46, 6065–6074 (2011).

    CAS  Google Scholar 

  28. Jambur, V. et al. Effects of minor alloying on the mechanical properties of Al based metallic glasses. J. Alloy. Compd. 854, 157266 (2021).

    CAS  Google Scholar 

  29. Zhao, Z. et al. Mechanical properties of samarium cobalt: a molecular dynamics study. Mater. Today Commun. 31, 103676 (2022).

    CAS  Google Scholar 

  30. Luo, H., Zhang, H., Sheng, H., Liu, J. P. & Szlufarska, I. Amorphous shear bands in SmCo5. Mater. Sci. Eng. A 785, 139340 (2020).

    CAS  Google Scholar 

  31. Bringuier, S. et al. Atomic insight into concurrent He, D, and T sputtering and near-surface implantation of 3C-SiC crystallographic surfaces. Nucl. Mater. Energy 19, 1–6 (2019).

    Google Scholar 

  32. Friedland, E. Investigation of amorphization energies for heavy ion implants into silicon carbide at depths far beyond the projected ranges. Nucl. Instrum. Methods Phys. Res. B 391, 10–13 (2017).

    CAS  Google Scholar 

  33. Kelires, P. & Denteneer, P. Total-energy and entropy considerations as a probe of chemical order in amorphous silicon carbide. J. Non-Cryst. Solids 231, 200–204 (1998).

    CAS  Google Scholar 

  34. Lu, G., Kioussis, N., Bulatov, V. V. & Kaxiras, E. Generalized-stacking-fault energy surface and dislocation properties of aluminum. Phys. Rev. B 62, 3099–3108 (2000).

    CAS  Google Scholar 

  35. Pei, Z. et al. From generalized stacking fault energies to dislocation properties: five-energy-point approach and solid solution effects in magnesium. Phys. Rev. B 92, 064107 (2015).

    Google Scholar 

  36. Szlufarska, I., Kalia, R. K., Nakano, A. & Vashishta, P. Atomistic processes during nanoindentation of amorphous silicon carbide. Appl. Phys. Lett. 86, 021915 (2005).

    Google Scholar 

  37. Heera, V. et al. Density and structural changes in SiC after amorphization and annealing. Appl. Phys. Lett. 70, 3531–3533 (1997).

    CAS  Google Scholar 

  38. Deb, S. K., Wilding, M., Somayazulu, M. & McMillan, P. F. Pressure-induced amorphization and an amorphous–amorphous transition in densified porous silicon. Nature 414, 528–530 (2001).

    CAS  Google Scholar 

  39. Cahn, R., Pratten, N., Scott, M., Sinning, H. & Leonardsson, L. Studies of relaxation of metallic glasses by dilatometry and density measurements.MRS Proc. 28, 241 (1983).

    Google Scholar 

  40. Rösner, H., Peterlechner, M., Kübel, C., Schmidt, V. & Wilde, G. Density changes in shear bands of a metallic glass determined by correlative analytical transmission electron microscopy. Ultramicroscopy 142, 1–9 (2014).

    Google Scholar 

  41. Zeng, F., Jiang, M. & Dai, L. Dilatancy induced ductile–brittle transition of shear band in metallic glasses. Proc. R. Soc. A Math. Phys. Eng. Sci. 474, 20170836 (2018).

    CAS  Google Scholar 

  42. Cheng, Y. & Ma, E. Atomic-level structure and structure–property relationship in metallic glasses. Prog. Mater. Sci. 56, 379–473 (2011).

    CAS  Google Scholar 

  43. Zhang, X. & Sauthoff, G. Analysis of relationships between cohesive energy, elastic moduli and lattice parameter of some high temperature intermetallics. Intermetallics 3, 137–140 (1995).

    CAS  Google Scholar 

  44. Long, Z. et al. A new criterion for predicting the glass-forming ability of bulk metallic glasses. J. Alloy. Compd. 475, 207–219 (2009).

    CAS  Google Scholar 

  45. Afflerbach, B. T. et al. Machine learning prediction of the critical cooling rate for metallic glasses from expanded datasets and elemental features. Chem. Mater. 34, 2945–2954 (2022).

    CAS  Google Scholar 

  46. Uda, T. Atomic structure of amorphous silicon. Solid State Commun. 64, 837–841 (1987).

    CAS  Google Scholar 

  47. Plimpton, S. Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 117, 1–19 (1995).

    CAS  Google Scholar 

  48. Zhao, L., Bokas, G., Perepezko, J. & Szlufarska, I. Nucleation kinetics in Al-Sm metallic glasses. Acta Mater. 142, 1–7 (2018).

    CAS  Google Scholar 

  49. Mendelev, M. et al. Development of interatomic potentials appropriate for simulation of devitrification of Al90Sm10 alloy. Model. Simul. Mater. Sci. Eng. 23, 045013 (2015).

    Google Scholar 

  50. Stukowski, A. Visualization and analysis of atomistic simulation data with OVITO–the Open Visualization Tool. Model. Simul. Mater. Sci. Eng. 18, 015012 (2009).

    Google Scholar 

  51. Fortunato, M. E., Mattson, J., Taylor, D. E., Larentzos, J. P. & Brennan, J. K. Pre- and Post-Processing Tools to Create and Characterize Particle-Based Composite Model Structures. ARL Technical Report No. ARL-TR-8213 2978–2987 (Army Resaerch Laboratory, 2017).

  52. Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).

    CAS  Google Scholar 

  53. Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758–1775 (1999).

    CAS  Google Scholar 

  54. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    CAS  Google Scholar 

  55. Xi, J. et al. Microalloying effect in ternary Al-Sm-X (X = Ag, Au, Cu) metallic glasses studied by ab initio molecular dynamics. Comput. Mater. Sci. 185, 109958 (2020).

    CAS  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the financial support from the Army Research Office, grant no. W911NF2110130.

Author information

Authors and Affiliations

Authors

Contributions

I.S. directed the project. X.H. and I.S. conceived the idea. X.H. performed the TEM experiments and data analysis. X.H. performed the micro-pillar compression tests and data analysis. V.J., N.L. and H.L. performed the MD simulations and data interpretation. S.A. and J.X. performed the DFT simulations and data interpretation. X.H. performed the continuous stiffness tests and data analysis. X.H. and R.S. performed the sample synthesis and annealing process with J.P.’s help. X.H. and H.Z. prepared the FIB TEM samples. X.H. and H.Z. prepared the micro-pillars through the FIB system. X.H. and I.S. interpreted all the data, with input from all authors. X.H. and I.S. cowrote the manuscript with input from all authors.

Corresponding authors

Correspondence to Hongliang Zhang or Izabela Szlufarska.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Materials thanks Patrick Cordier, Marc Meyers and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–10, Tables 1 and 2, simulation method and references.

Source data

Source Data Fig. 3

Statistical source data of Fig. 3a,d.

Source Data Fig. 4

Statistical source data of Fig. 4e.

Source Data Fig. 5

Statistical source data of Fig. 5.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, X., Liu, N., Jambur, V. et al. Amorphous shear bands in crystalline materials as drivers of plasticity. Nat. Mater. 22, 1071–1077 (2023). https://doi.org/10.1038/s41563-023-01597-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41563-023-01597-y

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing