Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Analysis of specificity for antigen, Mls, and allogeneic MHC by transfer of T-cell receptor α- and β-chain genes

Abstract

The majority of peripheral T lymphocytes bear cell-surface antigen receptors comprised of a disulphide-linked αβ dimer1. In an immune response, this receptor endows T cells with specificities for foreign antigenic protein fragments bound to cell surface glycoproteins encoded in the major histocompatibility complex (MHC)2–5. At a high frequency (>1%), the same population of T lymphocytes responds to allogeneic MHC glycoproteins6–8, or to differences at other genetic loci termed Mls8,9, in conjunction with MHC10. The αβ-antigen receptor has been implicated in alloreactivity11–13 and Mls reactivity14–18. In fact, many monoclonal T-cell lines recognize a foreign protein fragment bound to self-MHC molecules and, in addition, recognize allogeneic MHC glycoproteins19–21, an Mls-encoded determinant 22–24, or both25. For at least one T-cell clone, a monoclonal antibody directed against the αβ antigen receptor has been shown to block activation induced by either antigen-bound self-MHC or by allogeneic MHC26. However, it remains to be demonstrated directly that a single αβ receptor can mediate antigen specificity, alloreactivity and Mls reactivity, a prerequisite to understanding the structural basis of these high-frequency cross-reactivities. To address this issue we have performed transfers of receptor chain genes from a multiple-reactive T-cell clone into an unrelated host T lymphocyte. We now demonstrate definitively that the genes encoding a single αβ-receptor chain pair can transfer the recognition of self-MHC molecules complexed with fragments of antigen, allogeneic MHC molecules, and an Mls-encoded determinant (presumably in conjunction with MHC). In this case the transfer of antigen specificity and alloreactivity requires a specific αβ-receptor chain combination, whereas Mls reactivity can be transferred with the β-chain gene alone into a recipient expressing a randomly selected α-chain.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Kronenberg, M., Sin, G., Hood, L. E. & Shastri, N. A. Rev. Immun. 4, 529–591 (1986).

    Article  CAS  Google Scholar 

  2. Zinkernagel, R. M. & Doherty, P. C. J. exp. Med 141, 1427–1436 (1975).

    Article  CAS  Google Scholar 

  3. Babbitt, B., Allen, P. M., Matsueda, G., Haber, E. & Unanue, E. Nature 317, 359–361 (1985).

    Article  ADS  CAS  Google Scholar 

  4. Dembic, Z. et al. Nature 320, 232–238 (1986).

    Article  ADS  CAS  Google Scholar 

  5. Buus, S., Sette, A., Colon, S. M., Miles, C. & Grey, H. M. Science 235, 1353–1358 (1987).

    Article  ADS  CAS  Google Scholar 

  6. Lindahl, K. F. & Wilson, D. B. J. exp. Med. 145, 508–522 (1977).

    Article  CAS  Google Scholar 

  7. MacDonald, H. R. et al. Immun. Rev. 51, 93–123 (1980).

    Article  CAS  Google Scholar 

  8. Miller, R. A. & Stutman, O. J. Immun. 128, 2258–2264 (1982).

    CAS  PubMed  Google Scholar 

  9. Lutz, C. T., Glasebrook, A. L. & Fitch, F. W. Eur. J. Immun. 11, 726–734 (1981).

    Article  CAS  Google Scholar 

  10. Janeway, C. A. Jr & Katz, M. E. J. Immun. 134, 2057–2063 (1985).

    CAS  PubMed  Google Scholar 

  11. Gabert, J. et al. Cell 50, 545–554 (1987).

    Article  CAS  Google Scholar 

  12. Sorger, S. B., Hedrick, S. M., Fink, P. J., Bookman, M. A. & Matis, L. A. J. exp. Med. 165, 279–301 (1987).

    Article  CAS  Google Scholar 

  13. Matis, L. A., Sorger, S. B., McElligott, D. L., Fink, P. J. & Hedrick, S. M. Cell 51, 59–69 (1987).

    Article  CAS  Google Scholar 

  14. Kappler, J. W., Staerz, V., White, J. & Marrack, P.-C. Nature 332, 35–40 (1988).

    Article  ADS  CAS  Google Scholar 

  15. MacDonald, H. R. et al. Nature 332, 40–45 (1988).

    Article  ADS  CAS  Google Scholar 

  16. Abe, R., Nacchio, M. S., Fox, B. & Hodes, R. J. 335, 827–830 (1988).

  17. Fry, A. M. & Matis, L. A. Nature 335, 830–832 (1988).

    Article  ADS  CAS  Google Scholar 

  18. Pullen, A., Marrack, P. & Kappler, J. Nature 335, 796–801 (1988).

    Article  ADS  CAS  Google Scholar 

  19. Janeway, C. A. Jr, Lerner, E. A., Conrad, P. J. & Jones, B. Behring Inst. Mitt. 70, 200–209 (1982).

    Google Scholar 

  20. Butz, E. et al. Immunogenetics 22, 189–192 (1985).

    Article  Google Scholar 

  21. Ashwell, J. D., Chen, C. & Schwartz, R. H. J. Immun. 136, 389–395 (1986).

    CAS  PubMed  Google Scholar 

  22. Braciale, V. L. & Braciale, T. J. J. Immun. 127, 859–862 (1981).

    CAS  PubMed  Google Scholar 

  23. Katz, M. E. & Janeway, C. A. Jr J. Immun. 134, 2064–2070 (1985).

    CAS  PubMed  Google Scholar 

  24. Lynch, D. H., Gress, R. E., Needleman, B. W., Rosenberg, S. A. & Hodes, R. J. J. Immun. 134, 2071–2078 (1985).

    CAS  PubMed  Google Scholar 

  25. Webb, S., Okamoto, A. & Sprent, J. J. Immun. 141, 1828–1834 (1988).

    CAS  PubMed  Google Scholar 

  26. Kaye, J. & Janeway, C. A. Jr J. exp med. 159, 1397–1412 (1984).

    Article  CAS  Google Scholar 

  27. Fink, P. J., Matis, L. A., McElligott, D. L., Bookman, M. & Hedrick, S. M. Nature 321, 219–226 (1986).

    Article  ADS  CAS  Google Scholar 

  28. Engel, I. & Hedrick, S. M. Cell 54, 473–484 (1988).

    Article  CAS  Google Scholar 

  29. Samelson, L. E., Germain, R. N. & Schwartz, R. N. Proc. natn. Acad. Sci. U.S.A. 80, 6972–6976 (1983).

    Article  ADS  CAS  Google Scholar 

  30. Festenstein, H., Bishop, C. & Taylor, B. A. Immunogenetics 5, 357–361 (1977).

    Article  Google Scholar 

  31. Abe, R., Ryan, J. J. & Hodes, R. J. J. exp. Med. 165, 1113–1129 (1987).

    Article  CAS  Google Scholar 

  32. Pfeifer, J. D., McKenzie, D. T., Swain, S. L. & Putton, R. W. J. exp. Med. 166, 1464–1470 (1987).

    Article  CAS  Google Scholar 

  33. Gunning, P., Leavitt, J., Muscat, G., Ng, S.-Y. & Uedes, L. Proc. natn. Acad. Sci. U.S.A. 84, 4831–4835 (1987).

    Article  ADS  CAS  Google Scholar 

  34. Sen, R. & Baltimore, D. Cell 46, 705–716 (1986).

    Article  CAS  Google Scholar 

  35. Wang, A., La, S.-D. & Mark, D. Science 224, 1431–1433 (1984).

    Article  ADS  CAS  Google Scholar 

  36. Stall, A. M. & Loken, M. R. J. Immun. 132, 787–795 (1984).

    CAS  PubMed  Google Scholar 

  37. Malissen et al. Cell 55, 49–59 (1988).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kaye, J., Hedrick, S. Analysis of specificity for antigen, Mls, and allogeneic MHC by transfer of T-cell receptor α- and β-chain genes. Nature 336, 580–583 (1988). https://doi.org/10.1038/336580a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/336580a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing