Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Substitution of murine for human CD4 residues identifies amino acids critical for HIV-gp120 binding

Abstract

Human CD4 is the receptor for the gp120 envelope glycoprotein of human immunodeficiency virus and is essential for virus entry into the host cell1–8. Sequence analysis of CD4 has suggested an evolutionary origin from a structure with four immunoglobulin-related domains9,10. Only the two NH2-terminal domains are required to mediate gp120 binding11–13 . The extracellular segment of murine CD4 has an overall 50% identity with its human counterpart14 at the amino-acid level, but fails to bind gp12015. To define those residues of human CD4 critical for gp120 binding, we have taken advantage of this species difference and substituted all non-conserved murine for human CD4 residues between amino-acid positions 27—167. We used oligonucleotide-directed mutagenesis to create each of 16 individual mutant human CD4 molecules containing from 1—4 amino-acid substitutions. Introduction of as few as three amino acids into corresponding positions of human CD4 abrogates gp120 binding. Furthermore, these critical residues are located in domain I with a contribution from domain II. Modelling studies using the three-dimensional coordinates of the Vκ Bence-Jones REI homodimer localize the site in domain I to the C″β strand within CDR2 but projecting away from the homologues of principle antigen-binding regions CDR 1 and 3.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Klatzmann, D. et al. Science 225, 59–63 (1984).

    Article  ADS  CAS  Google Scholar 

  2. Dalgleish, A. G. et al. Nature 312, 763–766 (1984).

    Article  ADS  CAS  Google Scholar 

  3. Sattentau, Q., Dalgleish, A., Weiss, R. & Beverley, P. C. L. Science 234, 1120–1123 (1986).

    Article  ADS  CAS  Google Scholar 

  4. McDougal, J. S. et al. J. Immun. 137, 2937–2944 (1986).

    CAS  Google Scholar 

  5. McDougal, J. S. et al. Science 231, 382–385 (1986).

    Article  ADS  CAS  Google Scholar 

  6. Maddon, P. J. et al. Cell 47, 333–348 (1986).

    Article  CAS  Google Scholar 

  7. Sodroski, J., Goh, W. C., Rosen, C., Campbell, K. & Haseltine, W. A. Nature 322, 470–474 (1986).

    Article  ADS  CAS  Google Scholar 

  8. Lifson, J. et al. Nature 323, 725–728 (1986).

    Article  ADS  CAS  Google Scholar 

  9. Clark, S., Jeffries, W. A., Barclay, A. N., Gagnon, J. & Williams, A. Proc. natn. Acad. Sci. U.S.A. 84, 1649–1653 (1987).

    Article  ADS  CAS  Google Scholar 

  10. Littman, D. R. & Gettner, S. N. Nature 325, 453–455 (1987).

    Article  ADS  CAS  Google Scholar 

  11. Traunecker, A., Wolfgang, L. & Karjalainen, K. Nature 331, 84–86 (1988).

    Article  ADS  CAS  Google Scholar 

  12. Berger, E. A., Fuerst, T. R. & Moss, B. Proc. natn. Acad. Sci. U.S.A. 85, 2357–2361 (1988).

    Article  ADS  CAS  Google Scholar 

  13. Richardson, N. E. et al. Proc. natn. Acad. Sci. U.S.A. 85, 6102–6106 (1988).

    Article  ADS  CAS  Google Scholar 

  14. Maddon, P. J. et al. Proc. natn. Acad. Sci. U.S.A. 84, 9155–9159 (1987).

    Article  ADS  CAS  Google Scholar 

  15. McClure, M. O. et al. Nature 330, 487–489 (1987).

    Article  ADS  CAS  Google Scholar 

  16. Hussey, R. E. et al. Nature 331, 78–81 (1988).

    Article  ADS  CAS  Google Scholar 

  17. Seed, B. & Aruffo, A. Proc. natn. Acad. Sci. U.S.A. 84, 3365–3369 (1987).

    Article  ADS  CAS  Google Scholar 

  18. Jameson, B. A. et al. Science 240, 1335–1339 (1988).

    Article  ADS  CAS  Google Scholar 

  19. Maddon, P. et al. Cell 42, 93–104 (1985).

    Article  CAS  Google Scholar 

  20. Williams, A. F. & Barclay, A. N. A. Rev. Immun. 6, 381–405 (1988).

    Article  CAS  Google Scholar 

  21. Amit, A. G., Mariuzza, R. A., Phillips, S. E. V. & Poljack, R. J. Nature 313, 156–158 (1985).

    Article  ADS  CAS  Google Scholar 

  22. Krensky, A. M., Reiss, C. S., Mier, J. W., Strominger, J. L. & Burakorff, S. J. Proc. natn. Acad. Sci. U.S.A. 79, 2365–2369 (1982).

    Article  ADS  CAS  Google Scholar 

  23. Meuer, S. C., Schlossman, S. F. & Reinherz, E. L. Proc. natn. Acad. Sci. U.S.A. 79, 4395–4399 (1982).

    Article  ADS  CAS  Google Scholar 

  24. Biddison, W., Rao, P., Talle, M. A., Goldstein, G. & Shaw, S. J. J. exp. Med. 156, 1065–1076 (1982).

    Article  CAS  Google Scholar 

  25. Marrack, P. et al. J. exp. Med. 158, 1077–1091 (1983).

    Article  CAS  Google Scholar 

  26. Doyle, C. & Strominger, J. L. Nature 330, 256–259 (1987).

    Article  ADS  CAS  Google Scholar 

  27. Taylor, J. W. et al. Nucleic Acids Res. 13, 8749–8764 (1985).

    Article  CAS  Google Scholar 

  28. Taylor, J. W., Ott, J. & Eckstein, F. Nucleic Acids Res. 13, 8765–8785 (1985).

    Article  CAS  Google Scholar 

  29. Nakayame, K. & Eckstein, F. Nucleic Acids Res. 14, 9679–9698 (1986).

    Article  Google Scholar 

  30. Epp, O., Lattman, E. E., Schiffer, M., Huber, R. & Palm, W. Biochemistry 14, 4943–4952 (1975).

    Article  CAS  Google Scholar 

  31. Jones, T. A. J. appl. Crystallogr. 11, 268 (1978).

    Article  CAS  Google Scholar 

  32. Peterson, A. & Seed, B. Cell 54, 65–72 (1988).

    Article  CAS  Google Scholar 

  33. Landau, N. R., Warton, M. & Littman, D. R. Nature 334, 159–162 (1988).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Clayton, L., Hussey, R., Steinbrich, R. et al. Substitution of murine for human CD4 residues identifies amino acids critical for HIV-gp120 binding. Nature 335, 363–366 (1988). https://doi.org/10.1038/335363a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/335363a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing