Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Role of Rel/NF-κB transcription factors during the outgrowth of the vertebrate limb

This article has been updated

Abstract

The development of the vertebrate limb serves as an amenable system for studying signaling pathways that lead to tissue patterning and proliferation1. Limbs originate as a consequence of a differential growth of cells from the lateral plate mesoderm at specific axial levels2. At the tip of the limb primordia the progress zone, a proliferating group of mesenchymal cells, induces the overlying ectoderm to differentiate into a specialized structure termed the apical ectodermal ridge. Subsequent limb outgrowth requires reciprocal signalling between the ridge and the progress zone3,4,5,6. The Rel/NF-κB family of transcription factors is induced in response to several signals that lead to cell growth, differentiation, inflammatory responses, apoptosis and neoplastic transformation7. In unstimulated cells, NF-κB is associated in the cytoplasm with an inhibitory protein, I-κB. In response to an external signal, I-κB is phosphorylated, ubiquitinated and degraded, releasing NF-κB to enter the nucleus and activate transcription7. Here we show that Rel/NF-κB genes are expressed in the progress zone of the developing chick limb bud. When theactivity of Rel/NF-κB proteins is blocked by infection with viral vectors that produce transdominant-negative I-κBα proteins, limb outgrowth is arrested. Our results indicate that Rel/NF-κB transcription factors play a role in vertebrate limb development.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Expression of Rel/NF-κB and other proteins involved in chick limb development.
Figure 2: Characterization of transdominant-negative mutants of mouse I-κBα.
Figure 3: Blocking Rel/NF-κB signalling inhibits limb outgrowth.
Figure 4: Blocking Rel/NF-κB signalling alters gene expression in the developing limb.

Similar content being viewed by others

Change history

  • 16 June 2014

    Owing to an HTML symbol conversion error the superscript number 2 for author A.T.T. should have been 3; the error was corrected on 16 June 2014.

References

  1. Tickle, C. & Eichele, G. Vertebrate limb development. Annu. Rev. Cell Biol. 10, 121–152 (1994).

    Article  CAS  Google Scholar 

  2. Searls, R. L. & Janners, M. Y. The initiation of limb bud outgrowth in the embryonic chick. Dev. Biol. 24, 198–213 (1971).

    Article  CAS  Google Scholar 

  3. Saunders, J. W. J. The proximo-distal sequence of the origin of the parts of the chick wing and the role of the ectoderm. J. Exp. Zool. 108, 363–404 (1948).

    Article  Google Scholar 

  4. Kieny, M. Rôle inducteur du mésoderme dans la différenciation précoce du bourgeon de membre chez l'embryon de Poulet. J. Bembryol. Exp. Morphol. 8, 457–467 (1960).

    CAS  Google Scholar 

  5. Summerbell, D. Aquantitative analysis of the effect of excision of the AER from the chick limb bud. J. Embryol. Exp. Morphol. 32, 651–660 (1974).

    CAS  PubMed  Google Scholar 

  6. Rowe, D. A. & Fallon, J. F. The proximodistal determination of skeletal parts in the developing chick leg. J. Embryol. Exp. Morphol. 68, 1–7 (1982).

    CAS  PubMed  Google Scholar 

  7. Verma, I. M., Stevenson, J. K., Schwarz, E. M., Van Antwerp, D. & Miyamoto, S. Rel/NF-kappa B/I kappa B family: intimate tales of association and dissociation. Genes Dev. 9, 2723–2735 (1995).

    Article  CAS  Google Scholar 

  8. Hamburger, V. & Hamilton, H. Aseries of normal stages in the development of the chick embryo. J. Morphol. 88, 49–92 (1951).

    Article  CAS  Google Scholar 

  9. Davidson, D. R., Crawley, A., Hill, R. E. & Tickle, C. Position-depenent expression of two related homeobox genes in developing vertebrate limbs. Nature 352, 429–431 (1991).

    Article  ADS  CAS  Google Scholar 

  10. Chen, Z. F. & Behringer, R. R. Twist is required in head mesenchyme for cranial neural tube morphogenesis. Genes Dev. 9, 686–699 (1995).

    Article  CAS  Google Scholar 

  11. Niswander, L., Tickle, C., Vogel, A., Booth, I. & Martin, G. R. FGF-4 replaces the apical ectodermal ridge and directs outgrowth and patterning of the limb. Cell 75, 579–587 (1993).

    Article  CAS  Google Scholar 

  12. Fallon, J. F.et al. FGF-2: apical ectodermal ridge growth signal for chick limb development. Science 264, 104–107 (1994).

    Article  ADS  CAS  Google Scholar 

  13. Laufer, E., Nelson, C. E., Johnson, R. L., Morgan, B. A. & Tabin, C. Sonic hedgehog and Fgf-4 act through a signaling cascade and feedback loop to integrate growth and patterning of the developing limb bud. Cell 79, 993–1003 (1994).

    Article  CAS  Google Scholar 

  14. Niswander, L., Jeffrey, S., Martin, G. R. & Tickle, C. Apositive feedback loop coordinates growth and patterning in the vertebrate limb. Nature 371, 609–612 (1994).

    Article  ADS  CAS  Google Scholar 

  15. Crossley, P. H., Minowada, G., MacArthur, C. A. & Martin, G. R. Roles for FGF-8 in the induction, initiation and maintenance of chick limb development. Cell 84, 127–136 (1996).

    Article  CAS  Google Scholar 

  16. Vogel, A., Rodriguez, C. & Izpisúa Belmonte, J. C. Involvement of FGF-8 in initiation, outgrowth and patterning of the vertebrate limb. Development 122, 1737–1750 (1996).

    CAS  PubMed  Google Scholar 

  17. Van Antwerp, D. J., Martin, S. J., Kafri, T., Green, D. R. & Verma, I. M. Suppression of TNF-alpha-induced apoptosis by NF-kappaB. Science 274, 787–789 (1996).

    Article  ADS  CAS  Google Scholar 

  18. Inoue, J.et al. c-rel activates but v-rel suppresses transcription from kappa B sites. Proc. Natl Acad. Sci. USA 88, 3715–3719 (1991).

    Article  ADS  CAS  Google Scholar 

  19. Riddle, R. D., Johnson, R. L., Laufer, E. & Tabin, C. Sonic hedgehog mediates the polarizing activity of the ZPA. Cell 75, 1401–1416 (1993).

    Article  CAS  Google Scholar 

  20. Shen, R., Chen, Y., Huang, L., Vitale, E. & Solursh, M. Characterization of the human MSX-1 promoter and an enhancer responsible for retinoic acid induction. Cell Mol. Biol. Res. 40, 297–312 (1994).

    CAS  PubMed  Google Scholar 

  21. Jiang, J., Kosman, D., Ip, Y. T. & Levine, M. The dorsal morphogen gradient regulates the mesoderm determinant twist in early Drosophila embryos. Genes Dev. 5, 1881–1891 (1991).

    Article  CAS  Google Scholar 

  22. Howard, T. D.et al. Mutations in TWIST, a basic helix-loop-helix transcription factor, in Saethre-Chotzen syndrome. Nature Genet. 15, 36–41 (1997).

    Article  Google Scholar 

  23. el Ghouzzi, V.et al. Mutations of the TWIST gene in the Aethre-Chotzen syndrome. Nature Genet. 15, 42–46 (1997).

    Article  CAS  Google Scholar 

  24. Shishido, E., Higashijima, S., Emori, Y. & Saigo, K. Two FGF-receptor homologues of Drosophila : one is expressed in mesodermal primordium in early embryos. Development 117, 751–761 (1993).

    CAS  PubMed  Google Scholar 

  25. MacArthur, C.et al. FGF-8 isoforms activate receptor splice forms that are expressed in mesenchymal regions of mouse development. Development 121 (suppl.), 3603–3613 (1995).

    Google Scholar 

  26. Deng, C.et al. Fibroblast growth factor receptor-1 (FGFR-1) is essential for normal neural tube and limb development. Dev. Biol. 185, 42–54 (1997).

    Article  CAS  Google Scholar 

  27. Robert, B., Lyons, G., Simandl, B.-K., Kuroiwa, A. & Buckingham, M. The apical ectodermal ridge regulates Hox-7 and Hox-8 gene expression in developing limb buds. Genes Dev. 5, 2363–2374 (1991).

    Article  CAS  Google Scholar 

  28. Ogura, T.et al. Evidence that Shh cooperates with a retinoic acid inducible co-factor to establish ZPA-like activity. Development 122, 537–542 (1996).

    CAS  PubMed  Google Scholar 

  29. Izpisúa Belmonte, J. C., De Robertis, E. M., Storey, K. G. & Stern, C. The homeobox gene goosecoid and the origin of organizer cells in the early chick blastoderm. Cell 74, 645–659 (1993).

    Article  Google Scholar 

  30. Miyake, S.et al. Efficient generation of recombinant adenoviruses using adenovirus DNA-terminal protein complex and a cosmid bearing the full-length virus genome. Proc. Natl Acad. Sci. USA 93, 1320–1324 (1996).

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

We thank T. Gilmore, R. Hrdlickova and H. R. Bose for reagents; M. Pando, D. Van Antwerp, I Saito, C. Rays, J. De La Peña, C. De La Peña and C. Rodriguez-Esteban for suggestions and help with virus infection and in situ hybridizations; and B. Coyne and L. Hooks for help in assembling the manuscript. Y.K. is on leave of absence from the Institute of Medical Science, The University of Tokyo. This work was supported by a fellowship from the Gulbenkian Foundation (PGDBM) and Program PRAXIS XXI (A.T.T.), grants from the NIH, NIH and the Wayne and Gladys Valley Foundation (I.M.V.) and grants from the NSF, NIH and the G. Harold and Leyla Y. Mathers Charitable Foundation (J.C.I.B.). J.C.I.B. is a Pew Scholar. I.M.V. is an American Cancer Society Professor of Molecular Biology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Inder M. Verma.

Supplementary Information

Supplementary Information

Supplementary Information

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kanegae, Y., Tavares, A., Belmonte, J. et al. Role of Rel/NF-κB transcription factors during the outgrowth of the vertebrate limb. Nature 392, 611–614 (1998). https://doi.org/10.1038/33429

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/33429

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing