Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Identification of xanthurenic acid as the putative inducer of malaria development in the mosquito

Abstract

Malaria is transmitted from vertebrate host to mosquito vector by mature sexual blood-living stages called gametocytes1,2. Within seconds of ingestion into the mosquito bloodmeal, gametocytes undergo gametogenesis. Induction requires the simultaneous exposure to at least two stimuli in vitro: a drop in bloodmeal temperature to 5 °C below that of the vertebrate host1,2,3, and a rise in pH from 7.4 to 8.0–8.2 (refs 1, 4). In vivo the mosquito bloodmeal has a pH of between 7.5 and 7.6 (refs 5, 6). It is thought that in vivo the second inducer is an unknown mosquito-derived gametocyte-activating factor5,7,8. Here we show that this factor is xanthurenic acid. We also show that low concentrations of xanthurenic acid can act together with pH to induce gametogenesis in vitro. Structurally related compounds are at least ninefold less effective at inducing gametogenesis in vitro. In Drosophila mutants with lesions in the kynurenine pathway of tryptophan metabolism (of which xanthurenic acid is a side product), no alternative active compound was detected in crude insect homogenates. These data could form the basis of the rational development of new methods of interrupting the transmission of malaria using drugs or new refractory mosquito genotypes to block parasite gametogenesis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Distribution of GAF activity following fractionation of crude extracts of Anopheles stephensi pupae by reverse-phase HPLC.
Figure 2: MS–MS collisionally activated decomposition spectrum of the GAF quasimolecular ion m/z 206 at 25–30 eV in argon on the Q-TOF instrument.
Figure 3
Figure 4: Ommochrome pathway of tryptophan metabolism and the effect of metabolites on exflagellation.
Figure 5: Xanthurenic acid extends the permissive pH range for exflagellation.

Similar content being viewed by others

References

  1. Sinden, R. E. Sexual development of malarial parasites. Adv. Parasitol. 22, 153–216 (1983).

    Article  CAS  Google Scholar 

  2. Sinden, R. E., Butcher, G., Billker, O. & Fleck, S. Regulation of infectivity of Plasmodium to the mosquito vector. Adv. Parasitol. 38, 53–117 (1996).

    Article  CAS  Google Scholar 

  3. Carter, R. & Graves, P. M. in Malaria — Principles and Practice of Malariology (eds Wernsdorfer, W.H. & McGregor, I.) 273–305 (Churchill Livingstone, Edinburgh, 1988).

    Google Scholar 

  4. Nijhout, M. M. & Carter, R. Gamete development in malaria parasites: bicarbonate-dependent stimulation by pH in vitro. Parasitology 76, 39–53 (1978).

    Article  CAS  Google Scholar 

  5. Micks, D. W., de Caires, P. F. & Franco, L. B. The relationship of exflagellation in avian plasmodia to pH and immunity in the mosquito. Am. J. Hyg. 48, 182–190 (1948).

    CAS  PubMed  Google Scholar 

  6. Bishop, A. & McConnachie, E. W. Astudy of the factors affecting the emergence of the gametocytes of Plasmodium gallinaceum from the erythrocytes and the exflagellation of the male gametocytes. Parasitology 46, 192–215 (1956).

    Article  CAS  Google Scholar 

  7. Nijhout, M. M. Plasmodium gallinaceum: Exflagellation stimulated by a mosquito factor. Exp. Parasitol. 48, 75–80 (1979).

    Article  CAS  Google Scholar 

  8. Billker, O., Shaw, M. K., Margos, G. & Sinden, R. E. The roles of temperature, pH and mosquito factors as triggers of male and female gametogenesis of Plasmodium berghei in vitro. Parasitology 14, 1–7 (1997).

    Article  Google Scholar 

  9. Morris, H. R.et al. High sensitivity collisionally-activated decomposition tandem mass spectrometry on a novel quadrupole/orthogonal-acceleration time-of-flight mass spectrometer. Rapid Commun. Mass Spectrom. 10, 889–896 (1996).

    Article  ADS  CAS  Google Scholar 

  10. Morris, H. R., Paxton, T., Panico, M., McDowell, R. & Dell, A. Anovel geometry mass spectrometer, the Q-TOF, for low-femtomole/attomole-range biopolymer sequencing. J. Protein Chem. 16, 469–479 (1997).

    Article  CAS  Google Scholar 

  11. Morris, A., Paxton, T., Panico, M., McDowell, R. & Dell, A. in Mass Spectrometry of Biological MaterialsVol. 2 (eds Larsen, B. & McEwen, C.) 53–80 (Marcel Dekker, New York, 1998).

    Google Scholar 

  12. Garcia, G. E., Wirtz, R. A. & Rosenberg, R. Isolation of a substance from the mosquito that activates Plasmodium fertilization. Mol. Biochem. Parasitol. 88, 127–135 (1997).

    Article  CAS  Google Scholar 

  13. Morris, H. R., Taylor, G. W., Piper, P. J. & Tippins, J. R. Structure of slow-reacting substance of anaphylaxis from guinea-pig lung. Nature 285, 104–106 (1980).

    Article  ADS  CAS  Google Scholar 

  14. Morris, H. R., Taylor, G. W., Masento, M. S., Jermyn, K. A. & Kay, R. R. Chemical structure of the morphogen differentiation inducing factor from Dictyostelium discoideum. Nature 328, 811–814 (1987).

    Article  ADS  CAS  Google Scholar 

  15. Hunt, E. & Morris, H. R. Collagen cross-links: a mass spectrometric and 1H- and 13C-nuclear-magnetic-resonance study. Biochem. J. 135, 833–843 (1973).

    Article  CAS  Google Scholar 

  16. Battersby, A. R., Jones, K., McDonald, E., Robinson, J. A. & Morris, H. R. The structures and chemistry of isobacteriochlorins from Desulphovibrio gigas. Tetrahedron Lett. 25, 2213–2216 (1977).

    Article  Google Scholar 

  17. Kayser, H. in Comprehensive Insect Physiology, Biochemistry and PharmacologyVol. 10 (eds Kerkut, G.A. & Gilbert, L. I.) 368–416 (Pergamon, Oxford, 1985).

    Google Scholar 

  18. Beard, C. B., Benedict, M. Q., Primus, J. P., Finnerty, V. & Collins, F. H. Eye pigments in wild-type and eye-color mutant strains of the African malaria vector Anopheles gambiae. J. Hered. 86, 375–380 (1995).

    Article  CAS  Google Scholar 

  19. Wessing, A. & Eichelberg, D. Die fluoreszierenden Stoffe aus den Malpighischen Gefäßen verschiedener Augenfarbenmutanten von Drosophila melanogaster. Z. Naturforsch. 23, 376–386 (1968).

    Article  CAS  Google Scholar 

  20. Phillips, J. P. & Forrest, H. S. in The Genetics and Biology of DrosophilaVol. 2 (eds Ashburner, M. & Wright, T. R. F.) 542–624 (Academic, London, 1980).

    Google Scholar 

  21. Sullivan, D. T. & Sullivan, M. C. Transport defects as the physiological basis for eye color mutants of Drosophila meltanogaster. Biochem. Genet. 13, 603–613 (1975).

    Article  CAS  Google Scholar 

  22. Sullivan, D. T., Bell, L. A., Paton, D. R. & Sullivan, M. C. Purine transport by malpighian tubules of pteridine-deficient eye color mutants of Drosophila melanogaster. Biochem. Genet. 17, 565–573 (1979).

    Article  CAS  Google Scholar 

  23. Truscott, J. W. R. & Elderfield, J. Relationship between serum tryptophan and tryptophan metabolite levels after tryptophan ingestion in normal subjects and age-related cataract patients. Clin. Sci. 89, 591–599 (1995).

    Article  CAS  Google Scholar 

  24. Williams, S. A., Monti, J. A., Boots, L. R. & Cornwell, P. E. Quantitation of xanthurenic acid in rabbit serum using high-performance liquid chromatography. Am. J. Clin. Nutr. 40, 159–167 (1984).

    Article  CAS  Google Scholar 

  25. Morris, H. R., Etienne, A. R., Dell, A. & Albuquerque, R. Arapid and specific method for the high resolution purification and characterization of neuropeptides. J. Neurochem. 34, 574–582 (1980).

    Article  CAS  Google Scholar 

  26. Cochran, D. G. in Comprehensive Insect Physiology, Biochemistry and PharmacologyVol. 4 (eds Kerkut, G. A. & Gilbert, L. I.) 467–506 (Pergamon, Oxford, 1985).

    Google Scholar 

Download references

Acknowledgements

We thank A. Reason and J. Redfern (M-Scan) for MALDI Voyager Elite studies. This work was supported by the UNDP/World Bank/WHO special programme for research and training in tropical diseases (R.E.S.), the German Academic Exchange Service (HSPIII grant to O.B.) and the Wellcome Trust (H.R.M., A.D.).

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Billker, O., Lindo, V., Panico, M. et al. Identification of xanthurenic acid as the putative inducer of malaria development in the mosquito. Nature 392, 289–292 (1998). https://doi.org/10.1038/32667

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/32667

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing