Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Single stretch-activated ion channels in vascular endothelial cells as mechanotransducers?

Abstract

Endothelial cells line the inner surface of blood vessels and act as the main barrier to the passage of cells and large molecules from the blood stream to the tissues. Recent interest in the part played by the endothelium in regulating vascular tone has focused on the synthesis and secretion of prostacyclin1,2 and an endothelium-derived relaxing factor3,4. Endothelial cells respond to blood-borne agonists5, but how the endothelium senses and responds to mechanical forces generated by the flow of blood under pressure is not known6–12. Here we report patch-clamp recordings of ion channel activity from cell-attached membrane patches on aortic endothelial cells. In most of the patches examined, we observed unitary inward currents associated with the opening of a cation-selective channel ( 40 pS in standard saline). The channel is permeable to Ca2+ and its opening frequency increases when the membrane is stretched by applying suction through the patch electrode. The presence of mechanotransducing ion channels13–15in endothelial cells may help explain how the endothelium mediates vascular responses to haemodynamic stresses.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Weksler, B. B., Marcus, A. J. & Jafle, E. A. Proc. natn. Acad. Sci. U.S.A. 74, 3922–3926 (1977).

    Article  ADS  CAS  Google Scholar 

  2. Marcus, A. J., Weksler, B. B. & Jaffe, E. A. J. biol. Chem. 253, 7138–7141 (1978).

    CAS  PubMed  Google Scholar 

  3. Furchgott, R. F. Circulation Res. 53, 557–573 (1983).

    Article  CAS  Google Scholar 

  4. Peach, M. J., Loeb, A. L., Singer, H. A. & Saye, J. Hypertension 7, 194–1100 (1985).

    Article  Google Scholar 

  5. Shepro, D. & D'Amore, P. A. in Handbook of Physiology: The Cardiovascular System, Part 1 (eds Bohr, D. F., Somlyo, A. P. & Sparks, H. V.) 103–164 (American Physiological Society, Bethesda, 1984).

    Google Scholar 

  6. DeForrest, J. M. & Hollis, T. M. Am. J. Physiol. 234, H701–705 (1978).

    CAS  PubMed  Google Scholar 

  7. Franke, R-P. et al. Nature 307, 648–649 (1984).

    Article  ADS  CAS  Google Scholar 

  8. Holtz, J., Forstermann, U., Pohl, U., Giesler, M. & Bassenge, E. J. Cardiovasc. Pharmac. 6, 1161–1169 (1984).

    Article  CAS  Google Scholar 

  9. Frangos, J. A., Eskin, S. G., McIntire, L. V. & Ives, C. L. Science 227, 1477–1479 (1985).

    Article  ADS  CAS  Google Scholar 

  10. Langille, B. L. & O'Donnell, F. Science 231, 405–407 (1986).

    Article  ADS  CAS  Google Scholar 

  11. Davies, P. F., Remuzzi, A., Gordon, E. J., Dewey, C. F. & Gimbrone, M. A. Proc. natn. Acad. Sci. U.S.A. 83, 2114–2117 (1986).

    Article  ADS  CAS  Google Scholar 

  12. Pohl, U., Holtz, J., Busse, R. & Bassenge, E. Hypertension 8, 37–44 (1986).

    Article  CAS  Google Scholar 

  13. Brehm, P., Kullberg, R. & Moody-Corbett, F. J. Physiol., Lond. 350, 631–648 (1984).

    Article  CAS  Google Scholar 

  14. Guharay, F. & Sachs, F. J. Physiol. Lond. 352, 685–701 (1984).

    Article  CAS  Google Scholar 

  15. Guharay, F. & Sachs, F. J. Physiol. Lond. 363, 119–134 (1985).

    Article  CAS  Google Scholar 

  16. Jan, L. Y. & Jan, Y. N. J. Physiol. Lond. 262, 215–236 (1976).

    Article  CAS  Google Scholar 

  17. Lewis, C. A. J. Physiol., Lond. 286, 417–445 (1979).

    Article  CAS  Google Scholar 

  18. Edwards, C., Ottoson, D., Rydqist, B. & Swerup, C. Neuroscience 6, 1455–1460 (1981).

    Article  CAS  Google Scholar 

  19. Weksler, B. B., Ley, C. W. & Jaffe, E. A. J. clin. Invest. 62, 923–930 (1978).

    Article  CAS  Google Scholar 

  20. Katusic, Z. S., Shepherd, J. T., Vanhoutte, P. M. Fedn. Prod. 45, 289 (1986).

    Google Scholar 

  21. Hickey, K. A., Rubanyi, G., Paul, R. J. & Highsmith, R. F. Am. J. Physiol. 248, C550–C556 (1985).

    Article  CAS  Google Scholar 

  22. Pearson, J. D., Carleton, J. S., Hutchings, A. & Gordon, J. L. Biochem. J. 170, 265–271 (1978).

    Article  CAS  Google Scholar 

  23. Hess, P., Lansman, J. B. & Tsien, R. W. J. gen. Physiol. 88, 293–319 (1986).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lansman, J., Hallam, T. & Rink, T. Single stretch-activated ion channels in vascular endothelial cells as mechanotransducers?. Nature 325, 811–813 (1987). https://doi.org/10.1038/325811a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/325811a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing