Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

The 400-km seismic discontinuity and the proportion of olivine in the Earth's upper mantle

Abstract

The 400-km seismic discontinuity has traditionally been ascribed to the isochemical transformation of α-olivine to the β-modified-spinel structure in a mantle of peridotitic bulk composition1–6. It has recently been proposed7,8 that the observed seismic velocity increase at 400km depth is too abrupt and too small to result from a phase change in olivine but instead requires that the transition zone be chemically distinct in bulk composition from the uppermost mantle. By requiring phase relations in the Mg2SiO4-Fe2SiO4 system to be internally consistent thermodynamically, we find that the αβ transition in olivine of mantle (Mg0.9Fe0.1)2SiO4 composition is extremely sharp, occurring over a depth interval (isothermal) of 6 km. The magnitude of the predicted velocity increase is in agreement with that observed seismically9,10 if the transition zone is composed of 60–70% olivine. Thus, our results indicate that seismic velocities across the 400-km discontinuity are consistent with a transition zone of homogeneous peridotitic composition and do not require chemical stratification.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Bernai, J. D. Observatory 59, 268 (1936).

    Google Scholar 

  2. Ringwood, A. E. Composition and Petrology of the Earth's Mantle (McGraw-Hill, New York, 1975).

    Google Scholar 

  3. Liu, L. in The Earth: Its Origin, Structure and Evolution (ed. McElhinny, M. W.) 177–202 (Academic, New York, 1979).

    Google Scholar 

  4. Jeanloz, R. & Thompson, A. B., Rev. Geophys. Space Phys. 21, 51–74 (1983).

    Article  ADS  CAS  Google Scholar 

  5. Navrotsky, A. & Akaogi, M. J. geophys. Res. 89, 10135–10140 (1984).

    Article  ADS  CAS  Google Scholar 

  6. Weidner, D. J., Geophys. Res. Lett. 12, 417–420 (1985).

    Article  ADS  CAS  Google Scholar 

  7. Bass, J. D. & Anderson, D. L. Geophys. Res. Lett. 11, 237–240 (1984).

    Article  ADS  Google Scholar 

  8. Anderson, D. L. & Bass, J. D. Nature 320, 321–328 (1986).

    Article  ADS  CAS  Google Scholar 

  9. Walck, M. C. Geophys. R. R. astr. Soc. 76, 697–723 (1984).

    Article  ADS  Google Scholar 

  10. Grand, S. P. & Helmberger, D. V. Geophys. J. R. ast. Soc. 76, 399–438 (1984).

    Article  ADS  Google Scholar 

  11. Bina, C. R. & Wood, B. J. Geophys. Res. Lett. 11, 955–958 (1984).

    Article  ADS  CAS  Google Scholar 

  12. Suito, K. in High Pressure Research—Applications to Geophysics (eds Manghnani, M. H. & Akimoto, S.) 255–266 (Academic, New York, 1977).

    Book  Google Scholar 

  13. Kawada, K. . thesis, Univ. Tokyo (1977).

  14. Sawamoto, H. Phys. Chem. Miner. 13, 1–10 (1986).

    Article  ADS  CAS  Google Scholar 

  15. Watanabe, H. . in High Pressure Research in Geophysics (eds Akimoto, S. & Manghnani, M. H.) 441–464 (Center for Academic Publications, Tokyo, 1982).

    Google Scholar 

  16. Weidner, D. J., Sawamoto, H., Sasaki, S. & Kumazawa, M. J. geophys. Res. 89, 7852–7860 (1984).

    Article  ADS  CAS  Google Scholar 

  17. Wood, B. J. & Kleppa, O. J. Geochim. cosmochim. Acta 45, 529–534 (1981).

    Article  ADS  CAS  Google Scholar 

  18. Akimoto, S. & Fujisawa, H. J. geophys. Res. 73, 1467–1479 (1968).

    Article  ADS  CAS  Google Scholar 

  19. Ringwood, A. E. & Major, A. Phys. Earth planet. Inter. 3, 89–108 (1970).

    Article  ADS  CAS  Google Scholar 

  20. Yagi, T., Bell, P. M. & Mao, H.-K. Yb. Carnegie Inst. Wash. 78, 614–618 (1979).

    Google Scholar 

  21. Bina, C. R. & Wood, B. J. J. geophys. Res. (submitted).

  22. Anderson, O. L., Schreiber, E., Liebermann, R. C. & Soga, N. Rev. Geophys. Space Phys. 6, 491–524 (1968).

    Article  ADS  CAS  Google Scholar 

  23. Birch, F. J. geophys. Res. 57, 227–286 (1952).

    Article  ADS  CAS  Google Scholar 

  24. Wood, B. J. & Holloway, J. R. Geochim. cosmochim. Acta 48, 159–176 (1984).

    Article  ADS  CAS  Google Scholar 

  25. Watt, J. P., Davies, G. F. & O'Connell, R. J. Rev. Geophys. Space Phys. 14, 541–563 (1976).

    Article  ADS  CAS  Google Scholar 

  26. Sumino, Y. & Anderson, O. L. in CRC Handbook of Physical Properties of Rocks Vol. III (ed. Carmichael, R. S.) 39–138 (CRC, Boca Raton, 1984).

    Google Scholar 

  27. Lees, A. C., Bukowinski, M. S. T. & Jeanloz, R. J. geophys. Res. 88, 8145–8159 (1983).

    Article  ADS  CAS  Google Scholar 

  28. Muirhead, K. J. geophys. Res. 90, 2057–2059 (1985).

    Article  ADS  Google Scholar 

  29. Ingate, S. F., Ha, J. & Muirhead, K. J., Geophys. J.R. astr. Soc. 86, 57–61 (1986).

    Article  ADS  Google Scholar 

  30. Leven, J. H. Phys. Earth planet. Inter. 38, 9–27 (1985).

    Article  ADS  Google Scholar 

  31. Silver, P. G., Carlson, R. W., Bell, P. & Olsen, P. Eos 66, 1193–1198 (1985).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bina, C., Wood, B. The 400-km seismic discontinuity and the proportion of olivine in the Earth's upper mantle. Nature 324, 449–451 (1986). https://doi.org/10.1038/324449a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/324449a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing