Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Compositional heterogeneity in the mantle transition zone

Abstract

Earth’s mantle transition zone (MTZ) is characterized by several sharp increases in seismic wave speed between ~300 km and ~850 km depth. These seismic discontinuities are generally attributed to solid-state phase transitions that lead to density and viscosity increases, which could cause a barrier to convection by segregating thermally and chemically heterogeneous material. This Review discusses insights into the role of MTZ compositional heterogeneity in mantle convection, derived from the joint constraints of MTZ discontinuity-reflected, discontinuity-refracted and discontinuity-transmitted seismic waves and thermodynamic and convection models. Growing seismic data sets and advances in analysis techniques show that the topography of these discontinuities mainly reflects variations in mantle temperature and, hence, present-day mantle flow. However, the discordant behaviour of the 410 km and 660 km discontinuities shows that the thermal structure is not vertically coherent across the MTZ in many areas, indicating that the MTZ delays the convective transport of cold material from above and hot material from below. Variable reflectivity of the MTZ discontinuity provides evidence of lateral and vertical heterogeneity in major element chemistry and volatile content. Seismic results are consistent with whole-mantle mechanical mixing of tectonic plates, with segregated material accumulating in the MTZ over multiple mantle convection cycles.

Key points

  • The two main global mantle transition zone (MTZ) discontinuities, near 410 km and 660 km depth, and their topography are largely compatible with, respectively, exothermic and endothermic phase transformations in an olivine-rich composition at a potential temperature of ~1,600 K. In a few locations, the potential temperature seems to be high enough (>1,900 K) for exothermic garnet transitions to define the 660 km discontinuity.

  • Variable amplitudes of the 410 and 660 km discontinuities, frequent detection of a discontinuity near 300 km, infrequent detection of seismic reflectors between 700 km and 850 km depth and seismic complexity of the 520 km and 660 km discontinuities are all consistent with the mantle being largely a mechanical mixture of basaltic and refractory peridotitic material but having a larger diversity of peridotites than just harzburgite.

  • Geodynamic models indicate that whole-mantle convection of such mechanically mixed material will lead to compositional gradients in the MTZ, with accumulations of basalt just above 660 km and accumulations of refractory material below this depth. The current quality and quantity of seismic constraints are insufficient to confirm or rule out widespread vertical compositional gradients.

  • Some evidence indicates variable hydration of the MTZ and partial melting near the top of the MTZ, due to differences in water solubility of material above and below the 410 km discontinuity.

  • The absence of a clear correlation between observations of compositional and thermal heterogeneity in the MTZ is consistent with models suggesting that MTZ compositional heterogeneity accumulates over multiple convective cycles and is, therefore, largely disconnected from present-day flow.

  • Seismic tomography, numerical models and geochemical constraints support large-scale mantle flow, but evidence of the flattening of subducting lithospheric slabs and the accumulation of hot material derived from lower-mantle upwellings near the base of the MTZ indicates that the MTZ hampers flow more than would be expected for unobstructed whole-mantle convection, potentially owing to compositional gradients.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Mantle discontinuities and possible convection modes.
Fig. 2: Seismic wave speed and density in the mantle transition zone.
Fig. 3: Ray paths of seismic phases and synthetic waveforms.
Fig. 4: Synthetic reflectivity of SS and PP seismic wave precursors at the mantle transition zone 660 km discontinuity.
Fig. 5: Output of a tectonic plate recycling model.
Fig. 6: Characteristics of synthetic mantle transition zone seismic wave speed structures in a tectonic plate recycling model.
Fig. 7: Images of mantle transition zone seismic wave speed and thickness.

Similar content being viewed by others

References

  1. Birch, F. Elasticity and constitution of the earth’s interior. J. Geophys. Res. 57, 227–286 (1952).

    Article  Google Scholar 

  2. Bullen, K. E. The Earth’s Density (CRC, 1975).

  3. Ringwood, A. E. Composition and Petrology of the Earth’s Mantle (McGraw Hill, 1975).

  4. Ita, J. & Stixrude, L. Petrology, elasticity, and composition of the mantle transition zone. J. Geophys. Res. Solid Earth 97, 6849–6866 (1992).

    Article  Google Scholar 

  5. Weidner, D. J. & Wang, Y. in Earth’s Deep Interior. Mineral Physics and Tomography from the Atomic to the Global Scale Vol. 117 (eds Karato, S. et al.) 215–235 (American Geophysical Union, 2000).

  6. Richter, F. M. & McKenzie, D. P. On some consequences and possible causes of layered mantle convection. J. Geophys. Res. Solid Earth 86, 6133–6142 (1981).

    Article  Google Scholar 

  7. Bass, J. D. & Anderson, D. L. Composition of the upper mantle: geophysical test of two petrological models. Geophys. Res. Lett. 11, 237–240 (1984).

    Article  Google Scholar 

  8. Christensen, U. Effects of phase transitions on mantle convection. Annu. Rev. Earth Planet. Sci. 23, 65–87 (1995).

    Article  Google Scholar 

  9. Helffrich, G. R. & Wood, B. J. The Earth’s mantle. Nature 412, 501–507 (2001).

    Article  Google Scholar 

  10. van Keken, P. E., Hauri, E. H. & Ballentine, C. J. Mantle mixing: the generation, preservation, and destruction of chemical heterogeneity. Annu. Rev. Earth Planet. Sci. 30, 493–525 (2002).

    Article  Google Scholar 

  11. Hoffman, N. R. A. & McKenzie, D. P. The destruction of geochemical heterogeneities by differential fluid motions during mantle convection. Geophys. J. Int. 82, 163–206 (1985).

    Article  Google Scholar 

  12. Van der Hilst, R. D., Widiyantoro, S. & Engdahl, E. R. Evidence for deep mantle circulation from global tomography. Nature 386, 578–584 (1997).

    Article  Google Scholar 

  13. Van der Meer, D. G., Spakman, W., Van Hinsbergen, D. J. J., Amaru, M. L. & Torsvik, T. Towards absolute plate motions constrained by lower-mantle slab remnants. Nat. Geosci. 3, 36–40 (2009).

    Article  Google Scholar 

  14. Lyubetskaya, T. & Korenaga, J. Chemical composition of earth’s primitive mantle and its variance: 2. Implications for global geodynamics. J. Geophys. Res. 112, B03212 (2007).

    Google Scholar 

  15. Tucker, J. M., Van Keken, P. E., Jones, R. E. & Ballentine, C. J. A role for subducted oceanic crust in generating the depleted mid-ocean ridge basalt mantle. Geochem. Geophys. Geosyst. 21, e2020GC009148 (2020).

    Article  Google Scholar 

  16. Hofmann, A. W. Mantle geochemistry: the message from oceanic volcanism. Nature 385, 219–229 (1997).

    Article  Google Scholar 

  17. Mundl, A. et al. Tungsten-182 heterogeneity in modern ocean island basalts. Science 356, 66–69 (2017).

    Article  Google Scholar 

  18. Peters, B. J., Carlson, R. W., Day, J. M. D. & Horan, M. F. Hadean silicate differentiation preserved by anomalous 142Nd/144Nd ratios in the Réunion hotspot source. Nature 555, 89–93 (2018).

    Article  Google Scholar 

  19. Stracke, A. Earth’s heterogeneous mantle: a product of convection-driven interaction between crust and mantle. Chem. Geol. 330–331, 274–299 (2012).

    Article  Google Scholar 

  20. Davies, D. R., Goes, S. & Lau, H. C. P. in The Earth’s Heterogeneous Mantle (eds Khan, A. & Deschamps, F.) 441–477 (Springer, 2015).

  21. Davies, D. R. et al. Reconciling dynamic and seismic models of Earth’s lower mantle: the dominant role of thermal heterogeneity. Earth Plan. Sci. Lett. 353–354, 253–269 (2012).

    Article  Google Scholar 

  22. Deschamps, F., Li, Y. & Tackley, P. J. in The Heterogeneous Earth’s Mantle (eds Khan, A. & Deschamps, F.) 479–515 (Springer, 2015).

  23. Dziewonski, A. M., Lekic, V. & Romanowicz, B. A. Mantle anchor structure: an argument for bottom up tectonics. Earth Planet. Sci. Lett. 299, 69–79 (2010).

    Article  Google Scholar 

  24. Jones, T. D., Maguire, R. R., Van Keken, P. E., Ritsema, J. & Koelemeijer, P. Subducted oceanic crust as the origin of seismically slow lower-mantle structures. Prog. Earth Planet. Sci. 7, 17 (2020).

    Article  Google Scholar 

  25. Koelemeijer, P., Deuss, A. & Ritsema, J. Density structure of earth’s lowermost mantle from Stoneley mode splitting observations. Nat. Commun. 8, 15241 (2017).

    Article  Google Scholar 

  26. Torsvik, T., Smethurst, M. A., Burke, K. & Steinberger, B. Long term stability in deep mantle structure: evidence from the 300 Ma Skagerrak-centered large igneous province (the SCLIP). Earth Planet. Sci. Lett. 267, 444–452 (2008).

    Article  Google Scholar 

  27. Zhang, N., Zhong, S., Leng, W. & Li, Z.-X. A model for the evolution of the Earth’s mantle structure since the early paleozoic. J. Geophys. Res. 115, B06401 (2010).

    Google Scholar 

  28. Cammarano, F., Deuss, A., Goes, S. & Giardini, D. One-dimensional physical reference models for the upper mantle and transition zone: combining seismic and mineral physics constraints. J. Geophys. Res. 110, B01306 (2005).

    Google Scholar 

  29. Cammarano, F., Goes, S., Deuss, A. & Giardini, D. Is a pyrolitic adiabatic mantle compatible with seismic data? Earth Planet. Sci. Lett. 232, 227–243 (2005).

    Article  Google Scholar 

  30. Nakagawa, T., Tackley, P. J., Deschamps, F. & Connolly, J. A. D. Incorporating self-consistently calculated mineral physics into thermochemical mantle convection simulations in a 3-D spherical shell and its influence on seismic anomalies in Earth’s mantle. Geochem. Geophys. Geosyst. 10, Q03004 (2009).

    Article  Google Scholar 

  31. Ricard, Y., Richards, M. A., Lithgow-Bertelloni, C. & Lestunff, Y. Geodynamic model of mantle density heterogeneity. J. Geophys. Res. 98, 21895–21909 (1993).

    Article  Google Scholar 

  32. Schuberth, B. S. A., Bunge, H.-P. & Ritsema, J. Tomographic filtering of high-resolution mantle circulation models: can seismic heterogeneity be explained by temperature alone? Geochem. Geophys. Geosyst. 10, Q05W03 (2009).

    Article  Google Scholar 

  33. Deuss, A. Global observations of mantle discontinuities using SS and PP precursors. Surv. Geophys. 30, 301–326 (2009).

    Article  Google Scholar 

  34. Hedlin, M. A. H., Shearer, P. M. & Earle, P. S. Seismic evidence for small-scale heterogeneity throughout the Earth’s mantle. Nature 387, 145–150 (1997).

    Article  Google Scholar 

  35. Maguire, R., Ritsema, J. & Goes, S. Evidence of subduction-related thermal and compositional heterogeneity below the united states from transition zone receiver functions. Geophys. Res. Lett. 45, 8913–8922 (2018).

    Article  Google Scholar 

  36. Shearer, P. M. Seismic imaging of upper-mantle structure with new evidence for a 520-km discontinuity. Nature 344, 121–126 (1990).

    Article  Google Scholar 

  37. Tauzin, B., Kim, S. & Afonso, J. C. Multiple phase changes in the mantle transition zone beneath Northeast Asia: constraints from teleseismic reflected and converted body waves. J. Geophys. Res. Solid Earth 123, 6636–6657 (2018).

    Google Scholar 

  38. Waszek, L., Tauzin, B., Schmerr, N. C., Ballmer, M. D. & Afonso, J. C. A poorly mixed mantle transition zone and its thermal state inferred from seismic waves. Nat. Geosci. 14, 949–955 (2021).

    Article  Google Scholar 

  39. Yu, C., Day, E. A., de Hoop, M. V., Campillo, M. & van der Hilst, R. D. Mapping mantle transition zone discontinuities beneath the central pacific with array processing of SS precursors. J. Geophys. Res. Solid Earth 122, 10364–10378 (2017).

    Article  Google Scholar 

  40. Yu, C. et al. Compositional heterogeneity near the base of the mantle transition zone beneath Hawaii. Nat. Commun. 9, 1266 (2018).

    Article  Google Scholar 

  41. Bull, A. L., McNamara, A. K. & Ritsema, J. Synthetic tomography of plume clusters and thermochemical piles. Earth Planet. Sci. Lett. 278, 152–156 (2009).

    Article  Google Scholar 

  42. Deschamps, F. & Tackley, P. J. Searching for models of thermo-chemical convection that explain probabilistic tomography: (ii) Influence of physical and compositional parameters. Phys. Earth Planet. Inter. 176, 1–18 (2009).

    Article  Google Scholar 

  43. van Summeren, J. R. G., van den Berg, A. P. & van der Hilst, R. D. Upwellings from a deep mantle reservoir filtered at the 660 km phase transition in thermo-chemical convection models and implications for intra-plate volcanism. Phys. Earth Planet. Inter. 172, 210–224 (2009).

    Article  Google Scholar 

  44. Nakagawa, T., Tackley, P. J., Deschamps, F. & Connolly, J. A. The influence of MORB and harzburgite composition on thermo-chemical mantle convection in a 3D spherical shell with self-consistently calculated mineral physics. Earth Planet. Sci. Lett. 296, 403–412 (2010).

    Article  Google Scholar 

  45. Christensen, U. R. & Hofmann, A. W. Segregation of subducted oceanic crust in the convecting mantle. J. Geophys. Res. 99, 19867–19884 (1994).

    Article  Google Scholar 

  46. Coltice, N. & Ricard, Y. Geochemical observations and one layer mantle convection. Earth Planet. Sci. Lett. 174, 125–137 (1999).

    Article  Google Scholar 

  47. Jones, R. E. et al. Origins of the terrestrial Hf–Nd mantle array: evidence from a combined geodynamical–geochemical approach. Earth Planet. Sci. Lett. 518, 26–39 (2019).

    Article  Google Scholar 

  48. Xie, S. & Tackley, P. J. Evolution of U–Pb and Sm–Nd systems in numerical models of mantle convection. J. Geophys. Res. 109, B11204 (2004).

    Google Scholar 

  49. Xie, S. & Tackley, P. J. Evolution of helium and argon isotopes in a convecting mantle. Phys. Earth Planet. Inter. 146, 417–439 (2004).

    Article  Google Scholar 

  50. Brandenburg, J. P., Hauri, E. H., van Keken, P. E. & Ballentine, C. J. A multiple-system study of the geochemical evolution of the mantle with force-balanced plates and thermochemical effects. Earth Planet. Sci. Lett. 276, 1–13 (2008).

    Article  Google Scholar 

  51. Davies, G. F. Stirring geochemistry in mantle convection models with stiff plates and slabs. Geochim. Cosmochim. Acta 66, 3125–3142 (2002).

    Article  Google Scholar 

  52. Cobden, L. J., Goes, S., Cammarano, F. & Connolly, J. A. Thermo-chemical interpretation of one-dimensional seismic reference models for the upper mantle: evidence for bias due to heterogeneity. Geophys. J. Int. 175, 627–648 (2008).

    Article  Google Scholar 

  53. McDonough, W. F. & Rudnick, R. L. in Ultrahigh Pressure Mineralogy Ch. 4 (ed. Hemley, R. J.) 139–164 (De Gruyter, 1998).

  54. Palme, H. & O’Neill, H. S. in Treatise on Geochemistry (Holland, H. D. & Turekian, K. K.) 1–38 (Elsevier, 2007).

  55. Ringwood, A. E. Phase transformations and their bearing on the constitution and dynamics of the mantle. Geochim. Cosmochim. Acta 55, 2083–2110 (1991).

    Article  Google Scholar 

  56. McDonough, W. F. & Sun, S. S. The composition of the earth. Chem. Geol. 120, 223–253 (1995).

    Article  Google Scholar 

  57. Bina, C. R. in Treatise on Geochemistry (Holland, H. D. & Turekian, K. K.) 39–59 (Elsevier, 2003).

  58. Lyubetskaya, T. & Korenaga, J. Chemical composition of Earth’s primitive mantle and its variance: 1. Method and results. J. Geophys. Res. 112, B03211 (2007).

    Google Scholar 

  59. Allègre, C. J. & Turcotte, D. L. Implications of a two-component marble-cake mantle. Nature 323, 123–127 (1986).

    Article  Google Scholar 

  60. Stixrude, L. & Lithgow-Bertelloni, C. Geophysics of chemical heterogeneity in the mantle. Annu. Rev. Earth Planet. Sci. 40, 569–595 (2012).

    Article  Google Scholar 

  61. Hofmann, A. W. & Hart, S. R. An assessment of local and regional isotopic equilibrium in the mantle. Earth Planet. Sci. Lett. 38, 44–62 (1978).

    Article  Google Scholar 

  62. Kellogg, L. H. Mixing in the mantle. Annu. Rev. Earth Planet. Sci. 20, 365–388 (1992).

    Article  Google Scholar 

  63. Hofmann, A. W. & White, W. M. Mantle plumes from ancient oceanic crust. Earth Planet. Sci. Lett. 57, 421–436 (1982).

    Article  Google Scholar 

  64. Sobolev, A. W. et al. The amount of recycled crust in sources of mantle-derived melts. Science 316, 412–417 (2007).

    Article  Google Scholar 

  65. Xu, W., Lithgow-Bertelloni, C., Stixrude, L. & Ritsema, J. The effect of bulk composition and temperature on mantle seismic structure. Earth Planet. Sci. Lett. 275, 70–79 (2008).

    Article  Google Scholar 

  66. Dalton, C. A., Langmuir, C. H. & Gale, A. Geophysical and geochemical evidence for deep temperature variations beneath mid-ocean ridges. Science 344, 80–83 (2014).

    Article  Google Scholar 

  67. Katsura, T., Yoneda, A., Yamazaki, D., Yoshino, T. & Ito, E. Adiabatic temperature profile in the mantle. Phys. Earth Planet. Inter. 183, 212–218 (2010).

    Article  Google Scholar 

  68. Richards, F. D., Hoggard, M. J., Cowton, L. R. & White, N. J. Reassessing the thermal structure of oceanic lithosphere with revised global inventories of basement depths and heat flow measurements. J. Geophys. Res. Solid Earth 123, 9136–9161 (2018).

    Article  Google Scholar 

  69. Fullea, J., Lebedev, S., Martinec, Z. & Celli, N. L. WINTERC-G: mapping the upper mantle thermochemical heterogeneity from coupled geophysical–petrological inversion of seismic waveforms, heat flow, surface elevation and gravity satellite data. Geophys. J. Int. 226, 146–191 (2021).

    Article  Google Scholar 

  70. Herzberg, C. et al. Temperatures in ambient mantle and plumes: constraints from basalts, picrites, and komatiites: mantle temperatures inferred from volcanoes. Geochem. Geophys. Geosyst. 8, Q02006 (2007).

    Article  Google Scholar 

  71. Agrusta, R., van Hunen, J. & Goes, S. The effect of metastable pyroxene on the slab dynamics: metastable pyroxene and slab dynamics. Geophys. Res. Lett. 41, 8800–8808 (2014).

    Article  Google Scholar 

  72. Ohtani, E. & Sakai, T. Recent advances in the study of mantle phase transitions. Phys. Earth Plan. Int. 170, 240–247 (2008).

    Article  Google Scholar 

  73. Thio, V., Cobden, L. & Trampert, J. Seismic signature of a hydrous mantle transition zone. Phys. Earth Planet. Inter. 250, 46–63 (2016).

    Article  Google Scholar 

  74. Faccenda, M. & Dal Zilio, L. The role of solid-solid phase transitions in mantle convection. Lithos 268–271, 198–224 (2017).

    Article  Google Scholar 

  75. Katsura, T. & Ito, E. The system Mg2SiO4–Fe2SiO4 at high pressures and temperatures: precise determination of stabilities of olivine, modified spinel, and spinel. J. Geophys. Res. Solid Earth 94, 15663–15670 (1989).

    Article  Google Scholar 

  76. Katsura, T. et al. Olivine–wadsleyite transition in the system (Mg,Fe)2SiO4. J. Geophys. Res. Solid Earth 109, (2004).

  77. Morishima, H. et al. The phase boundary between α- and β-Mg2SiO4 determined by in situ X-ray observation. Science 265, 1202–1203 (1994).

    Article  Google Scholar 

  78. Hernández, E. R., Brodholt, J. & Alfè, D. Structural, vibrational and thermodynamic properties of Mg2SiO4 and MgSiO3 minerals from first-principles simulations. Phys. Earth Planet. Inter. 240, 1–24 (2015).

    Article  Google Scholar 

  79. Hirose, K. Phase transitions in pyrolitic mantle around 670-km depth; implications for upwelling of plumes from the lower mantle. J. Geophys. Res. 107, ECV 3-1–ECV 3-13 (2002).

  80. Ito, E. & Takahashi, E. Postspinel transformations in the system Mg2SiO4–Fe2SiO4 and some geophysical implications. J. Geophys. Res. Solid Earth 94, 10637–10646 (1989).

    Article  Google Scholar 

  81. Litasov, K., Ohtani, E., Sano, A., Suzuki, A. & Funakoshi, K. In situ X-ray diffraction study of post-spinel transformation in a peridotite mantle: implication for the 660-km discontinuity. Earth Planet. Sci. Lett. 238, 311–328 (2005).

    Article  Google Scholar 

  82. Ghosh, S. et al. Effect of water in depleted mantle on post-spinel transition and implication for 660 km seismic discontinuity. Earth Planet. Sci. Lett. 371–372, 103–111 (2013).

    Article  Google Scholar 

  83. Muir, J. M. R., Zhang, F. & Brodholt, J. P. The effect of water on the post-spinel transition and evidence for extreme water contents at the bottom of the transition zone. Earth Planet. Sci. Lett. 565, 116909 (2021).

    Article  Google Scholar 

  84. Litasov, K. Absence of density crossover between basalt and peridotite in the cold slabs passing through 660 km discontinuity. Geophys. Res. Lett. 31, L24607 (2004).

    Article  Google Scholar 

  85. Irifune, T. & Isshiki, M. Iron partitioning in a pyrolite mantle and the nature of the 410-km seismic discontinuity. Nature 392, 702–705 (1998).

    Article  Google Scholar 

  86. Helffrich, G. R. & Wood, B. J. 410 km discontinuity sharpness and the form of the olivine α-β phase diagram: resolution of apparent seismic contradictions. Geophys. J. Int. 126, F7–F12 (1996).

    Article  Google Scholar 

  87. Frost, D. J. The structure and sharpness of (Mg,Fe)2SiO4 phase transformations in the transition zone. Earth Planet. Sci. Lett. 216, 313–328 (2003).

    Article  Google Scholar 

  88. Frost, D. & Dolejš, D. Experimental determination of the effect of H2O on the 410-km seismic discontinuity. Earth Planet. Sci. Lett. 256, 182–195 (2007).

    Article  Google Scholar 

  89. Hirschmann, M. M., Aubaud, C. & Withers, A. C. Storage capacity of H2O in nominally anhydrous minerals in the upper mantle. Earth Planet. Sci. Lett. 236, 167–181 (2005).

    Article  Google Scholar 

  90. Mrosko, M. et al. Water, iron, redox environment: effects on the wadsleyite–ringwoodite phase transition. Contrib. Mineral. Petrol. 170, 9 (2015).

    Article  Google Scholar 

  91. Ishii, T., Kojitani, H. & Akaogi, M. Phase relations and mineral chemistry in pyrolitic mantle at 1600–2200 °C under pressures up to the uppermost lower mantle: phase transitions around the 660-km discontinuity and dynamics of upwelling hot plumes. Phys. Earth Planet. Inter. 274, 127–137 (2018).

    Article  Google Scholar 

  92. Yoshino, T. & Katsura, T. Electrical conductivity of mantle minerals: role of water in conductivity anomalies. Annu. Rev. Earth Planet. Sci. 41, 605–628 (2013).

    Article  Google Scholar 

  93. Dai, L. & Karato, S. The effect of pressure on the electrical conductivity of olivine under the hydrogen-rich conditions. Phys. Earth Planet. Inter. 232, 51–56 (2014).

    Article  Google Scholar 

  94. Tosi, N., Čadek, O. & Martinec, Z. Subducted slabs and lateral viscosity variations: effects on the long-wavelength geoid. Geophys. J. Int. 179, 813–826 (2009).

    Article  Google Scholar 

  95. Simmons, N. A., Forte, A. M., Boschi, L. & Grand, S. P. GyPSuM: a joint tomographic model of mantle density and seismic wave speeds. J. Geophys. Res. 115, B12310 (2010).

    Article  Google Scholar 

  96. Tauzin, B., van der Hilst, R. D., Wittlinger, G. & Ricard, Y. Multiple transition zone seismic discontinuities and low velocity layers below western United States. J. Geophys. Res. Solid Earth 118, 2307–2322 (2013).

    Article  Google Scholar 

  97. van der Meijde, M. Seismic evidence for water deep in earth’s upper mantle. Science 300, 1556–1558 (2003).

    Article  Google Scholar 

  98. Duffy, T. S. & Anderson, D. L. Seismic velocities in mantle minerals and the mineralogy of the upper mantle. J. Geophys. Res. 94, 1895–1912 (1989).

    Article  Google Scholar 

  99. Holland, T. J. B., Hudson, N. F. C., Powell, R. & Harte, B. New thermodynamic models and calculated phase equilibria in NCFMAS for basic and ultrabasic compositions through the transition zone into the uppermost lower mantle. J. Petrol. 54, 1901–1920 (2013).

    Article  Google Scholar 

  100. Stixrude, L. & Lithgow-Bertelloni, C. Thermal expansivity, heat capacity and bulk modulus of the mantle. Geophys. J. Int. 228, 1119–1149 (2021).

    Article  Google Scholar 

  101. Stixrude, L. & Lithgow-Bertelloni, C. Thermodynamics of mantle minerals — II. Phase equilibria. Geophys. J. Int. 184, 1180–1213 (2011).

    Article  Google Scholar 

  102. Munch, F. D., Khan, A., Tauzin, B., van Driel, M. & Giardini, D. Seismological evidence for thermo-chemical heterogeneity in earth’s continental mantle. Earth Planet. Sci. Lett. 539, 116240 (2020).

    Article  Google Scholar 

  103. Ritsema, J., Xu, W., Stixrude, L. & Lithgow-Bertelloni, C. Estimates of the transition zone temperature in a mechanically mixed upper mantle. Earth Planet. Sci. Lett. 277, 244–252 (2009).

    Article  Google Scholar 

  104. Shearer, P. M. & Flanagan, M. P. Seismic velocity and density jumps across the 410- and 660-kilometer discontinuities. Science 285, 1545–1548 (1999).

    Article  Google Scholar 

  105. Stixrude, L., Hemley, R. J., Fei, Y. & Mao, H. K. Thermoelasticity of silicate perovskite and magnesiowüstite and stratification of the earth’s mantle. Science 257, 1099–1101 (1992).

    Article  Google Scholar 

  106. Lawrence, J. F. & Shearer, P. M. Constraining seismic velocity and density for the mantle transition zone with reflected and transmitted waveforms: mantle transition zone. Geochem. Geophys. Geosyst. 7, Q10012 (2006).

    Article  Google Scholar 

  107. Lessing, S., Thomas, C., Saki, M., Schmerr, N. & Vanacore, E. On the difficulties of detecting PP precursors. Geophys. J. Int. 201, 1666–1681 (2015).

    Article  Google Scholar 

  108. Estabrook, C. H. & Kind, R. The nature of the 660-kilometer upper-mantle seismic discontinuity from precursors to the PP phase. Science 274, 1179–1182 (1996).

    Article  Google Scholar 

  109. Dziewonski, A. M. & Anderson, D. L. Preliminary reference earth model. Phys. Earth Planet. Int. 25, 297–356 (1981).

    Article  Google Scholar 

  110. Kennett, B. L. N., Engdahl, E. R. & Buland, R. Constraints on seismic velocities in the earth from traveltimes. Geophys. J. Int. 122, 108–124 (1995).

    Article  Google Scholar 

  111. Cao, Q., Wang, P., van der Hilst, R. D., de Hoop, M. V. & Shim, S.-H. Imaging the upper mantle transition zone with a generalized radon transform of SS precursors. Phys. Earth Planet. Inter. 180, 80–91 (2010).

    Article  Google Scholar 

  112. Deuss, A. & Woodhouse, J. Seismic observations of splitting of the mid transition zone discontinuity. Science 294, 345–357 (2001).

    Article  Google Scholar 

  113. Shearer, P. M. Transition zone velocity gradients and the 520-km discontinuity. J. Geophys. Res. 101, 3053–3066 (1996).

    Article  Google Scholar 

  114. Tian, D., Lv, M., Wei, S. S., Dorfman, S. M. & Shearer, P. M. Global variations of earth’s 520- and 560-km discontinuities. Earth Plan. Sci. Lett. 552, 116600 (2020).

    Article  Google Scholar 

  115. Deuss, A., Andrews, J. & Day, E. in Physics and Chemistry of the Deep Earth (ed. Karato, S.-I.) 295–323 (Wiley, 2013).

  116. Revenaugh, J. & Jordan, T. H. Mantle layering from ScS reverberations: 2. The transition zone. J. Geophys. Res. 96, 19763–19780 (1991).

    Article  Google Scholar 

  117. Bagley, B. & Revenaugh, J. Upper mantle seismic shear discontinuities of the Pacific. J. Geophys. Res. 113, B12301 (2008).

    Article  Google Scholar 

  118. Kemp, M., Jenkins, J., Maclennan, J. & Cottaar, S. X-discontinuity and transition zone structure beneath Hawaii suggests a heterogeneous plume. Earth Planet. Sci. Lett. 527, 115781 (2019).

    Article  Google Scholar 

  119. Pugh, S., Jenkins, J., Boyce, A. & Cottaar, S. Global receiver function observations of the X-discontinuity reveal recycled basalt beneath hotspots. Earth Planet. Sci. Lett. 561, 116813 (2021).

    Article  Google Scholar 

  120. Waszek, L., Schmerr, N. C. & Ballmer, M. D. Global observations of reflectors in the mid-mantle with implications for mantle structure and dynamics. Nat. Commun. 9, 385 (2018).

    Article  Google Scholar 

  121. Jenkins, J., Deuss, A. & Cottaar, S. Converted phases from sharp 1000 km depth mid-mantle heterogeneity beneath Western Europe. Earth Planet. Sci. Lett. 459, 196–207 (2017).

    Article  Google Scholar 

  122. Andrews, J. & Deuss, A. Detailed nature of the 660 km region of the mantle from global receiver function data. J. Geophys. Res. 113, B06304 (2008).

    Google Scholar 

  123. Simmons, N. A. & Gurrola, H. Multiple seismic discontinuities near the base of the transition zone in the Earth’s mantle. Nature 405, 559–562 (2000).

    Article  Google Scholar 

  124. Warren, J. M. Global variations in abyssal peridotite compositions. Lithos 248–251, 193–219 (2016).

    Article  Google Scholar 

  125. Rampone, E. & Hofmann, A. W. A global overview of isotopic heterogeneities in the oceanic mantle. Lithos 148, 247–261 (2012).

    Article  Google Scholar 

  126. Reid, I. & Jackson, H. R. Oceanic spreading rate and crustal thickness. Mar. Geophys. Res. 5, 165–172 (1981).

    Google Scholar 

  127. Olive, J.-A. & Dublanchet, P. Controls on the magmatic fraction of extension at mid-ocean ridges. Earth Planet. Sci. Lett. 549, 116541 (2020).

    Article  Google Scholar 

  128. Liu, C.-Z. et al. Ancient, highly heterogeneous mantle beneath Gakkel Ridge, Arctic Ocean. Nature 452, 311–316 (2008).

    Article  Google Scholar 

  129. Brandenburg, J. P. & van Keken, P. E. Deep storage of oceanic crust in a vigorously convecting mantle. J. Geophys. Res. 112, B06403 (2007).

    Google Scholar 

  130. Kellogg, L. H., Hager, B. H. & Van der Hilst, R. D. Compositional stratification in the deep mantle. Science 283, 1881–1884 (1999).

    Article  Google Scholar 

  131. Vilella, K. et al. Constraints on the composition and temperature of LLSVPs from seismic properties of lower mantle minerals. Earth Planet. Sci. Lett. 554, 116685 (2021).

    Article  Google Scholar 

  132. Labrosse, S., Hernlund, J. W. & Coltice, N. A crystallizing dense magma ocean at the base of the earth’s mantle. Nature 450, 866–869 (2007).

    Article  Google Scholar 

  133. Ballmer, M. D., Houser, C., Hernlund, J. W., Wentzcovitch, R. M. & Hirose, K. Persistence of strong silica-enriched domains in the earth’s lower mantle. Nat. Geosci. 10, 236–240 (2017).

    Article  Google Scholar 

  134. Lee, C.-T. A. et al. Upside-down differentiation and generation of a ‘primordial’ lower mantle. Nature 463, 930–933 (2010).

    Article  Google Scholar 

  135. Deschamps, F., Cobden, L. & Tackley, P. J. The primitive nature of large low shear-wave velocity provinces. Earth Planet. Sci. Lett. 349–350, 198–208 (2012).

    Article  Google Scholar 

  136. Ferrachat, S. & Ricard, Y. Regular vs. chaotic mantle mixing. Earth Planet. Sci. Lett. 155, 75–86 (1998).

    Article  Google Scholar 

  137. Van Keken, P. E. & Ballentine, C. J. Whole-mantle versus layered mantle convection and the role of a high-viscosity lower mantle in terrestrial volatile evolution. Earth Planet. Sci. Lett. 156, 19–32 (1998).

    Article  Google Scholar 

  138. Van Keken, P. E. & Zhong, S. Mixing in a 3D spherical model of present-day mantle convection. Earth Planet. Sci. Lett. 171, 533–547 (1999).

    Article  Google Scholar 

  139. Hanan, B. B. & Graham, D. W. Lead and helium isotopic evidence from oceanic basalts for a common deep source of mantle plumes. Science 272, 991–995 (1996).

    Article  Google Scholar 

  140. Jackson, M. G. & Carlson, R. An ancient recipe for flood basalt genesis. Nature 476, 316–319 (2011).

    Article  Google Scholar 

  141. Gülcher, A. J. P., Ballmer, M. D. & Tackley, P. J. Coupled dynamics and evolution of primordial and recycled heterogeneity in earth’s lower mantle. Solid Earth 12, 2087–2107 (2021).

    Article  Google Scholar 

  142. Jones, T. D., Sime, N. & Van Keken, P. E. Burying earth’s primitive mantle in the slab graveyard. Geochem. Geophys. Geosyst 22, e2020GC009396 (2021).

    Article  Google Scholar 

  143. Tackley, P. J. Dynamics and evolution of the deep mantle resulting from thermal, chemical, phase and melting effects. Earth Sci. Rev. 110, 1–25 (2012).

    Article  Google Scholar 

  144. Hart, S. R. & Zindler, A. In search of a bulk-earth composition. Chem. Geol. 57, 247–267 (1986).

    Article  Google Scholar 

  145. Zindler, A. & Hart, S. Chemical geodynamics. Annu. Rev. Earth Planet. Sci. 14, 493–571 (1986).

    Article  Google Scholar 

  146. Armienti, P. & Gasperini, D. Do we really need mantle components to define mantle composition? J. Petrol. 48, 693–709 (2007).

    Article  Google Scholar 

  147. Grose, C. J. & Afonso, J. C. Chemical disequilibria, lithospheric thickness, and the source of ocean island basalts. J. Petrol. 60, 755–790 (2019).

    Article  Google Scholar 

  148. Meibom, A. & Anderson, D. L. The statistical upper mantle assemblage. Earth Planet. Sci. Lett. 217, 123–139 (2004).

    Article  Google Scholar 

  149. Carlson, R. W. et al. How did early earth become our modern world? Annu. Rev. Earth Planet. Sci. 42, 151–178 (2014).

    Article  Google Scholar 

  150. Bercovici, D. & Karato, S. I. Whole mantle convection and the transition-zone water filter. Nature 425, 39–44 (2003).

    Article  Google Scholar 

  151. Hirschmann, M. M. Water, melting and the deep earth H2O cycle. Annu. Rev. Earth Planet. Sci. 34, 629–653 (2006).

    Article  Google Scholar 

  152. Kohlstedt, D. L., Keppler, H. & Rubie, D. C. Solubility of water in the α, β and γ phases of (Mg,Fe)2SiO4. Contrib. Mineral. Petrol. 123, 345–357 (1996).

    Article  Google Scholar 

  153. Fei, H. & Katsura, T. High water solubility of ringwoodite at mantle transition zone temperature. Earth Planet. Sci. Lett. 531, 115987 (2020).

    Article  Google Scholar 

  154. Smyth, J. R. A crystallographic model for hydrous wadsleyite (β-Mg2SiO4): an ocean in the Earth’s interior? Am. Mineral. 79, 1021–1024 (1994).

    Google Scholar 

  155. Smyth, J. R. & Jacobsen, S. D. in Geophysical Monograph Series (eds Jacobsen, S. D. & Van Der Lee, S.) 1–11 (American Geophysical Union, 2013).

  156. Wood, B. J. The effect of H2O on the 410-kilometer seismic discontinuity. Science 268, 74–76 (1995).

    Article  Google Scholar 

  157. Irifune, T. & Ringwood, A. E. Phase transformations in subducted oceanic crust and buoyancy relations at depths of 600–800 km in the mantle. Earth Plan. Sci. Lett. 117, 101–110 (1993).

    Article  Google Scholar 

  158. Lee, C.-T. A. & Chen, W.-P. Possible density segregation of subducted oceanic lithosphere along a weak serpentinite layer and implications for compositional stratification of the Earth’s mantle. Earth Planet. Sci. Lett. 255, 357–366 (2007).

    Article  Google Scholar 

  159. Gaherty, J. B. & Hager, B. H. Compositional vs. thermal buoyancy and the evolution of subducted lithosphere. Geophys. Res. Lett. 21, 141–144 (1994).

    Article  Google Scholar 

  160. Mambole, A. & Fleitout, L. Petrological layering induced by an endothermic phase transition in the Earth’s mantle. Geophys. Res. Lett. 29, 2044 (2002).

    Article  Google Scholar 

  161. van Keken, P. E., Karato, S. & Yuen, D. A. Rheological control of oceanic crust separation in the transition zone. Geophys. Res. Lett. 23, 1821–1824 (1996).

    Article  Google Scholar 

  162. Yan, J., Ballmer, M. D. & Tackley, P. J. The evolution and distribution of recycled oceanic crust in the Earth’s mantle: insight from geodynamic models. Earth Planet. Sci. Lett. 537, 116171 (2020).

    Article  Google Scholar 

  163. Tackley, P. J., Stevenson, D. J., Glatzmaier, G. A. & Schubert, G. Effects of an endothermic phase transition at 670 km depth in a spherical model of convection in the Earth’s mantle. Nature 361, 699–704 (1993).

    Article  Google Scholar 

  164. Solheim, L. P. & Peltier, W. R. Phase boundary deflections at 660-km depth and episodically layered isochemical convection in the mantle. J. Geophys. Res. 99, 15861 (1994).

    Article  Google Scholar 

  165. Bijwaard, H., Spakman, W. & Engdahl, E. R. Closing the gap between regional and global travel time tomography. J. Geophys. Res. Solid Earth 103, 30055–30078 (1998).

    Article  Google Scholar 

  166. Fukao, Y. & Obayashi, M. Subducted slabs stagnant above, penetrating through, and trapped below the 660 km discontinuity. J. Geophys. Res. 118, 5920–5938 (2013).

    Article  Google Scholar 

  167. Li, C., van der Hilst, R. D., Engdahl, E. R. & Burdick, S. A new global model for P wave speed variations in Earth’s mantle. Geochem. Geophys. Geosyst. 9, Q05018 (2008).

    Article  Google Scholar 

  168. Simmons, N. A., Myers, S. C., Johannesson, G. & Matzel, E. LLNL-G3Dv3: global P wave tomography model for improved regional and teleseismic travel time prediction. J. Geophys. Res. Solid Earth 117, B10302 (2012).

    Article  Google Scholar 

  169. Van der Hilst, R. D., Engdahl, R., Spakman, W. & Nolet, G. Tomographic imaging of subducted lithosphere below northwest Pacific island arcs. Nature 353, 37–43 (1991).

    Article  Google Scholar 

  170. Christensen, U. R. The influence of trench migration on slab penetration into the lower mantle. Earth Planet. Sci. Lett. 140, 27–39 (1996).

    Article  Google Scholar 

  171. Goes, S., Agrusta, R., van Hunen, J. & Garel, F. Subduction–transition zone interaction: a review. Geosphere 13, 1–21 (2017).

    Article  Google Scholar 

  172. Van der Hilst, R. D. & Seno, T. Effects of relative plate motion on the deep structure and penetration depth of slabs below the Izu-Bonin and Mariana island arcs. Earth Plan. Sci. Lett. 120, 395–407 (1993).

    Article  Google Scholar 

  173. Agrusta, R., Goes, S. & van Hunen, J. Subducting-slab transition-zone interaction: stagnation, penetration and mode switches. Earth Planet. Sci. Lett. 464, 10–23 (2017).

    Article  Google Scholar 

  174. Nakakuki, T., Tagawa, M. & Iwase, Y. Dynamical mechanisms controlling formation and avalanche of a stagnant slab. Phys. Earth Planet. Inter. 183, 309–320 (2010).

    Article  Google Scholar 

  175. Ogawa, M. Chemical stratification in a two-dimensional convecting mantle with magmatism and moving plates. J. Geophys. Res. 108, 2561 (2003).

    Article  Google Scholar 

  176. Tackley, P. J. et al. in Earth’s Deep Mantle: Structure, Composition and Evolution (eds. Van der Hilst, R. et al.) 83–99 (American Geophysical Union, 2005).

  177. Ballmer, M. D., Schmerr, N. C., Nakagawa, T. & Ritsema, J. Compositional mantle layering revealed by slab stagnation at ~1000-km depth. Sci. Adv. 1, e1500815 (2015).

    Article  Google Scholar 

  178. Nolet, G., Karato, S. & Montelli, R. Plume fluxes from seismic tomography. Earth Planet. Sci. Lett. 248, 685–699 (2006).

    Article  Google Scholar 

  179. McNamara, A. K. & Van Keken, P. E. Cooling of the earth: a parameterized convection study of whole versus layered models. Geochem. Geophys. Geosyst. 1, 1027 (2000).

    Article  Google Scholar 

  180. Van Keken, P. E. & Ballentine, C. J. Dynamical models of mantle volatile evolution and the role of phase transitions and temperature-dependent rheology. J. Geophys. Res. 104, 7137–7151 (1999).

    Article  Google Scholar 

  181. Bina, C. R. & Helffrich, G. Phase transition Clapeyron slopes and transition zone seismic discontinuity topography. J. Geophys. Res. 99, 15853 (1994).

    Article  Google Scholar 

  182. Bello, L., Coltice, N., Tackley, P. J., Dietmar Müller, R. & Cannon, J. Assessing the role of slab rheology in coupled plate–mantle convection models. Earth Planet. Sci. Lett. 430, 191–201 (2015).

    Article  Google Scholar 

  183. Funiciello, F., Morra, G., Regenauer-Lieb, K. & Giardini, D. Dynamics of retreating slabs: 1. Insights from two-dimensional numerical experiments. J. Geophys. Res. Solid Earth 108, 2206 (2003).

    Google Scholar 

  184. Yanagisawa, T., Yamagishi, Y., Hamano, Y. & Stegman, D. R. Mechanism for generating stagnant slabs in 3-D spherical mantle convection models at Earth-like conditions. Phys. Earth Plan. Int. 183, 341–352 (2010).

    Article  Google Scholar 

  185. Ballmer, M. D., Ito, G., Wolfe, C. J. & Solomon, S. C. Double layering of a thermochemical plume in the upper mantle beneath Hawaii. Earth Planet. Sci. Lett. 376, 155–164 (2013).

    Article  Google Scholar 

  186. Kaneshima, S. & Helffrich, G. Small scale heterogeneity in the mid-lower mantle beneath the circum-Pacific area. Phys. Earth Planet. Inter. 183, 91–103 (2010).

    Article  Google Scholar 

  187. Bentham, H. L. M. & Rost, S. Scattering beneath Western Pacific subduction zones: evidence for oceanic crust in the mid-mantle. Geophys. J. Int. 197, 1627–1641 (2014).

    Article  Google Scholar 

  188. Kumagai, I., Davaille, A., Kurita, K. & Stutzmann, E. Mantle plumes: thin, fat, successful, or failing? Constraints to explain hot spot volcanism through time and space. Geophys. Res. Lett. 35, L16301 (2008).

    Article  Google Scholar 

  189. Jones, T. D., Davies, D. R., Campbell, I. H., Wilson, C. R. & Kramer, S. C. Do mantle plumes preserve the heterogeneous structure of their deep-mantle source? Earth Planet. Sci. Lett. 434, 10–17 (2016).

    Article  Google Scholar 

  190. Beghein, C., Trampert, J. & van Heijst, H. J. Radial anisotropy in seismic reference models of the mantle. J. Geophys. Res. Solid Earth 111, B02303 (2006).

    Article  Google Scholar 

  191. Chang, S. & Ferreira, A. M. G. Inference on water content in the mantle transition zone near subducted slabs from anisotropy tomography. Geochem. Geophys. Geosyst. 20, 1189–1201 (2019).

    Article  Google Scholar 

  192. Moulik, P. & Ekström, G. An anisotropic shear velocity model of the Earth’s mantle using normal modes, body waves, surface waves and long-period waveforms. Geophys. J. Int. 199, 1713–1738 (2014).

    Article  Google Scholar 

  193. Panning, M. P., Lekić, V. & Romanowicz, B. A. Importance of crustal corrections in the development of a new global model of radial anisotropy. J. Geophys. Res. 115, B12325 (2010).

    Article  Google Scholar 

  194. Lei, W. et al. Global adjoint tomography — model GLAD-M25. Geophys. J. Int. 223, 1–21 (2020).

    Article  Google Scholar 

  195. Ritsema, J., van Heijst, H. J., Deuss, A. & Woodhouse, J. S40RTS: a degree-40 shear velocity model for the mantle from new Rayleigh wave dispersion, teleseismic traveltimes, and normal–mode splitting function measurements. Geophys. J. Int. 184, 1223–1236 (2011).

    Article  Google Scholar 

  196. Ritsema, J., van Heijst, H. J. & Woodhouse, J. Global transition zone tomography. J. Geophys. Res. 109, B02302 (2004).

    Google Scholar 

  197. Meschede, M. & Romanowicz, B. Lateral heterogeneity scales in regional and global upper mantle shear velocity models. Geophys. J. Int. 200, 1078–1095 (2015).

    Article  Google Scholar 

  198. Gu, Y. J., Dziewoński, A. M. & Ekström, G. Simultaneous inversion for mantle shear velocity and topography of transition zone discontinuities. Geophys. J. Int. 154, 559–583 (2003).

    Article  Google Scholar 

  199. van der Hilst, R. D. & Kárason, H. Compositional heterogeneity in the bottom 1000 kilometers of earth’s mantle: toward a hybrid convection model. Science 283, 1885–1888 (1999).

    Article  Google Scholar 

  200. Guo, Z. & Zhou, Y. Finite-frequency imaging of the global 410- and 660-km discontinuities using SS precursors. Geophys. J. Int. 220, 1978–1994 (2020).

    Article  Google Scholar 

  201. Houser, C., Masters, G., Flanagan, M. & Shearer, P. Determination and analysis of long-wavelength transition zone structure using SS precursors. Geophys. J. Int. 174, 178–194 (2008).

    Article  Google Scholar 

  202. Lawrence, J. F. & Shearer, P. M. Imaging mantle transition zone thickness with SdSSS finite-frequency sensitivity kernels. Geophys. J. Int. 174, 143–158 (2008).

    Article  Google Scholar 

  203. Lawrence, J. F. & Shearer, P. M. A global study of transition zone thickness using receiver functions: global transition zone thickness. J. Geophys. Res. Solid Earth 111, B06307 (2006).

    Article  Google Scholar 

  204. Tauzin, B., Debayle, E. & Wittlinger, G. The mantle transition zone as seen by global Pds phases: no clear evidence for a thin transition zone beneath hotspots. J. Geophys. Res. Solid Earth 113, B08309 (2008).

    Article  Google Scholar 

  205. Lebedev, S., Chevrot, S. & Van der Hilst, R. D. Seismic evidence for olivine phase changes at the 410- and 660-kilometer discontinuities. Science 296, 1300–1302 (2002).

    Article  Google Scholar 

  206. Tauzin, B. & Ricard, Y. Seismically deduced thermodynamics phase diagrams for the mantle transition zone. Earth Planet. Sci. Lett. 401, 337–346 (2014).

    Article  Google Scholar 

  207. Yu, C., Goes, S., Day, E. A. & Van der Hilst, R. D. Thermal and chemical properties of the global mantle transition zone from PP and SS precursors. AGU Fall Meet. Abstr. 2019, DI31B-0005 (2019).

    Google Scholar 

  208. Cottaar, S. & Deuss, A. Large-scale mantle discontinuity topography beneath Europe: signature of akimotoite in subducting slabs. J. Geophys. Res. Solid Earth 121, 279–292 (2016).

    Article  Google Scholar 

  209. Helffrich, G. Topography of the transition zone seismic discontinuities. Rev. Geophys. 38, 141–158 (2000).

    Article  Google Scholar 

  210. Boyce, A. & Cottaar, S. Insights into deep mantle thermochemical contributions to African magmatism from converted seismic phases. Geochem. Geophys. Geosyst. 22, e2020GC009478 (2021).

    Article  Google Scholar 

  211. Deuss, A. in GSA Special Papers: Plates, Plumes and Planetary Processes Vol. 430 (eds Foulger, G.R. & Jurdy, D.M.) 121–136 (Geological Society of America, 2007).

  212. Deuss, A., Redfern, S. A. T., Chambers, K. & Woodhouse, J. H. The nature of the 660-kilometer discontinuity in Earth’s mantle from global seismic observations of PP precursors. Science 311, 198–201 (2006).

    Article  Google Scholar 

  213. Houser, C. & Williams, Q. Reconciling Pacific 410 and 660km discontinuity topography, transition zone shear velocity patterns, and mantle phase transitions. Earth Planet. Sci. Lett. 296, 255–266 (2010).

    Article  Google Scholar 

  214. Jenkins, J., Cottaar, S., White, R. S. & Deuss, A. Depressed mantle discontinuities beneath Iceland: evidence of a garnet controlled 660 km discontinuity? Earth Planet. Sci. Lett. 433, 159–168 (2016).

    Article  Google Scholar 

  215. Frost, D. A., Garnero, E. J. & Rost, S. Dynamical links between small- and large-scale mantle heterogeneity: seismological evidence. Earth Planet. Sci. Lett. 482, 135–146 (2018).

    Article  Google Scholar 

  216. Kaneshima, S. Seismic scatterers in the mid-lower mantle. Phys. Earth Planet. Inter. 257, 105–114 (2016).

    Article  Google Scholar 

  217. Maguire, R., Ritsema, J. & Goes, S. Signals of 660 km topography and harzburgite enrichment in seismic images of whole-mantle upwellings. Geophys. Res. Lett. 44, 3600–3607 (2017).

    Article  Google Scholar 

  218. Cao, Q., van der Hilst, R. D., de Hoop, M. V. & Shim, S.-H. Seismic imaging of transition zone discontinuities suggests hot mantle west of Hawaii. Science 332, 1068–1071 (2011).

    Article  Google Scholar 

  219. Ballmer, M. D. et al. in Hawaiian Volcanoes: From Source to Surface Ch. 3 (eds. Carey, R. et al.) 35–57 (Wiley, 2015).

  220. Dannberg, J. & Sobolev, S. V. Low-buoyancy thermochemical plumes resolve controversy of classical mantle plume concept. Nat. Commun. 6, 6960 (2015).

    Article  Google Scholar 

  221. Tauzin, B., Kim, S. & Kennett, B. L. N. Pervasive seismic low-velocity zones within stagnant plates in the mantle transition zone: thermal or compositional origin? Earth Planet. Sci. Lett. 477, 1–13 (2017).

    Article  Google Scholar 

  222. Wei, S. S., Shearer, P. M., Lithgow-Bertelloni, C., Stixrude, L. & Tian, D. Oceanic plateau of the Hawaiian mantle plume head subducted to the uppermost lower mantle. Science 370, 983–987 (2020).

    Article  Google Scholar 

  223. Cammarano, F. & Romanowicz, B. A. Insights into the nature of the transition zone from physically constrained inversion of long-period seismic data. Proc. Natl Acad. Sci. USA 104, 9139–9144 (2007).

    Article  Google Scholar 

  224. Niu, F. & Kawakatsu, H. Depth variation of the mid-mantle seismic discontinuity. Geophys. Res. Lett. 24, 429–432 (1997).

    Article  Google Scholar 

  225. LeStunff, Y., Wicks, C. W. & Romanowicz, B. PʹPʹ precursors under Africa: evidence for mid-mantle reflectors. Science 270, 74–77 (1995).

    Article  Google Scholar 

  226. Kaneshima, S. Seismic scatterers in the lower mantle near subduction zones. Geophys. J. Int. 219, S2–S20 (2019).

    Article  Google Scholar 

  227. Courtier, A. M. & Revenaugh, J. in Earth’s Deep Water Cycle Vol. 168 (eds Jacobsen, S. D. & Van Der Lee, S.) 181–193 (American Geophysical Union, 2013).

  228. van der Lee, S., Regenauer-Lieb, K. & Yuen, D. A. The role of water in connecting past and future episodes of subduction. Earth Planet. Sci. Lett. 273, 15–27 (2008).

    Article  Google Scholar 

  229. Zhao, D. & Ohtani, E. Deep slab subduction and dehydration and their geodynamic consequences: evidence from seismology and mineral physics. Gondwana Res. 16, 401–413 (2009).

    Article  Google Scholar 

  230. Revenaugh, J. & Sipkin, S. A. Seismic evidence for silicate melt atop the 410-km mantle discontinuity. Nature 369, 474–476 (1994).

    Article  Google Scholar 

  231. Song, T.-R. A., Helmberger, Don, V. & Grand, S. P. Low-velocity zone atop the 410-km seismic discontinuity in the northwestern United States. Nature 427, 530–533 (2004).

    Article  Google Scholar 

  232. Obayashi, M., Sugioka, H., Yoshimitsu, J. & Fukao, Y. High temperature anomalies oceanward of subducting slabs at the 410-km discontinuity. Earth Planet. Sci. Lett. 243, 149–158 (2006).

    Article  Google Scholar 

  233. Han, G. et al. Pervasive low-velocity layer atop the 410-km discontinuity beneath the northwest Pacific subduction zone: implications for rheology and geodynamics. Earth Planet. Sci. Lett. 554, 116642 (2021).

    Article  Google Scholar 

  234. Liu, Z., Park, J. & Karato, S. Seismological detection of low-velocity anomalies surrounding the mantle transition zone in Japan subduction zone. Geophys. Res. Lett. 43, 2480–2487 (2016).

    Article  Google Scholar 

  235. Schaeffer, A. J. & Bostock, M. G. A low-velocity zone atop the transition zone in northwestern Canada. J. Geophys. Res. 115, B06302 (2010).

    Google Scholar 

  236. Schmandt, B., Dueker, K. G., Hansen, S. M., Jasbinsek, J. J. & Zhang, Z. A sporadic low-velocity layer atop the western U.S. mantle transition zone and short-wavelength variations in transition zone discontinuities. Geochem. Geophys. Geosyst. 12, Q08014 (2011).

    Article  Google Scholar 

  237. Tauzin, B., Debayle, E. & Wittlinger, G. Seismic evidence for a global low-velocity layer within the Earth’s upper mantle. Nat. Geosci. 3, 718–721 (2010).

    Article  Google Scholar 

  238. Thompson, D. A. et al. Hydrous upwelling across the mantle transition zone beneath the Afar Triple Junction. Geochem. Geophys. Geosyst. 16, 834–846 (2015).

    Article  Google Scholar 

  239. Vinnik, L. & Farra, V. Low S velocity atop the 410-km discontinuity and mantle plumes. Earth Planet. Sci. Lett. 262, 398–412 (2007).

    Article  Google Scholar 

  240. Wei, S. S. & Shearer, P. M. A sporadic low-velocity layer atop the 410 km discontinuity beneath the Pacific Ocean. J. Geophys. Res. Solid Earth 122, 5144–5159 (2017).

    Article  Google Scholar 

  241. Stolper, E., Walker, D., Hager, B. H. & Hays, J. F. Melt segregation from partially molten source regions: the importance of melt density and source region size. J. Geophys. Res. Solid Earth 86, 6261–6271 (1981).

    Article  Google Scholar 

  242. Ohtani, E., Shibata, T., Kubo, T. & Kato, T. Stability of hydrous phases in the transition zone and the upper most part of the lower mantle. Geophys. Res. Lett. 22, 2553–2556 (1995).

    Article  Google Scholar 

  243. Sakamaki, T., Suzuki, A. & Ohtani, E. Stability of hydrous melt at the base of the Earth’s upper mantle. Nature 439, 192–194 (2006).

    Article  Google Scholar 

  244. Schmandt, B., Jacobsen, S. D., Becker, T. W., Liu, Z. & Dueker, K. G. Dehydration melting at the top of the lower mantle. Science 344, 1265–1268 (2014).

    Article  Google Scholar 

  245. Kawai, K., Yamamoto, S., Tsuchiya, T. & Maruyama, S. The second continent: existence of granitic continental materials around the bottom of the mantle transition zone. Geosci. Front. 4, 1–6 (2013).

    Article  Google Scholar 

  246. Karato, S. Water distribution across the mantle transition zone and its implications for global material circulation. Earth Planet. Sci. Lett. 301, 413–423 (2011).

    Article  Google Scholar 

  247. Houser, C. Global seismic data reveal little water in the mantle transition zone. Earth Planet. Sci. Lett. 448, 94–101 (2016).

    Article  Google Scholar 

  248. Bissig, F. et al. Multifrequency inversion of Ps and Sp receiver functions: methodology and application to US array data. J. Geophys. Res. Solid Earth 126, e2020JB020350 (2021).

    Article  Google Scholar 

  249. Nowacki, A., Kendall, J.-M., Wookey, J. & Pemberton, A. Mid-mantle anisotropy in subduction zones and deep water transport. Geochem. Geophys. Geosyst. 16, 764–784 (2015).

    Article  Google Scholar 

  250. Christensen, U. R. & Yuen, D. A. Layered convection induced by phase transitions. J. Geophys. Res. 90, 10291 (1985).

    Article  Google Scholar 

  251. Hager, B. H., Clayton, R. W., Richards, M. A., Comer, R. P. & Dziewonski, A. M. Lower mantle heterogeneity, dynamic topography and the geoid. Nature 313, 541–545 (1985).

    Article  Google Scholar 

  252. Domeier, M. P., Doubrovine, V., Torsvik, T. H., Spakman, W. & Bull, A. L. Global correlation of lower mantle structure and past subduction. Geophys. Res. Lett. 43, 4945–4953 (2016).

    Article  Google Scholar 

  253. Grand, S. P. Mantle shear-wave tomography and the fate of subducted slabs. Phil Trans. R. Soc. Lond. A 360, 2475–2491 (2002).

    Article  Google Scholar 

  254. Saki, M., Thomas, C., Nippress, S. E. J. & Lessing, S. Topography of upper mantle seismic discontinuities beneath the North Atlantic: the Azores, Canary and Cape Verde plumes. Earth Planet. Sci. Lett. 409, 193–202 (2015).

    Article  Google Scholar 

  255. Civiero, C. et al. Multiple mantle upwellings in the transition zone beneath the northern East-African Rift system from relative P-wave travel-time tomography. Geochem. Geophys. Geosyst. 16, 2949–2968 (2015).

    Article  Google Scholar 

  256. Connolly, J. A. D. Computation of phase equilibria by linear programming: a tool for geodynamic modeling and its application to subduction zone decarbonation. Earth Planet. Sci. Lett. 236, 524–541 (2005).

    Article  Google Scholar 

  257. Matas, J. & Bukowinski, M. S. T. On the anelastic contribution to the temperature dependence of lower mantle seismic velocities. Earth Planet. Sci. Lett. 259, 51–65 (2007).

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank the reviewers for their thoughtful comments. C.Y. is supported by National Natural Science Foundation of China (NSFC) grant no. 42174058. This Review is based on previously published material and data.

Author information

Authors and Affiliations

Authors

Contributions

S.G., C.Y., M.D.B. and J.Y. researched data for the article. S.G., C.Y., M.D.B. and R.D.v.d.H. contributed substantially to discussions of the content. The manuscript was written by S.G. with input from all co-authors. All authors reviewed and/or edited the manuscript before submission. The original figures were made by S.G., C.Y. and J.Y.

Corresponding author

Correspondence to Saskia Goes.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Earth & Environment thanks Songqiao Wei, Juan Carlos Afonso and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Seismic discontinuities

Changes in seismic wave speed over a depth interval that is sufficiently narrow (usually 1–30 km) to produce refractions, reflections and conversions of seismic waves.

Solid-state phase transitions

Changes in mineral phase to a more energetically favoured atomic structure occurring as a function of pressure and temperature (such as to a more densely packed structure in response to an increase in pressure).

Partial melting

Rocks made up of multiple components with different melting temperatures can melt in part; for example, basalt is formed when a fertile peridotite or pyrolite melts by about 18%.

Major element

An element with a concentration exceeding 1 wt%; the most common building blocks of mantle rocks are magnesium, silicon, iron, oxygen, aluminium and calcium.

Mantle convection models

Numerical models that solve fluid dynamic equations of the conservation of mass, momentum and, sometimes, also energy, plus equations of state that capture how viscosity, density, thermal expansivity and conductivity vary with pressure and temperature (and sometimes other parameters such as strain rate or composition), used to study the physical behaviour of convection in the mantle.

Basalt

The main rock making up the crust of oceanic plates, formed by partial melting of mantle rocks (peridotites): includes mid-ocean-ridge basalt (MORB), island-arc basalt and ocean-island basalt.

Fertile

Rocks that have not been affected by partial melting.

Peridotite

Ultramafic rock that is representative of the composition of Earth’s mantle, including (from most to least refractory) dunites, harzburgites and lherzolites, all comprising ≥40% olivine (or its high-pressure polymorphs) along with pyroxenes, spinels and garnets.

Refractory

Residual rock remaining after partial melting: when a fertile peridotite partially melts at average mantle temperatures, the melt is basaltic and the refractory residue is harzburgitic.

Pyrolite

The theoretical composition of the mantle, based on melting models, compositions of meteorites and the least-differentiated mantle peridotite samples found at the surface.

Equilibrium assemblage

A mixture of rock types with different compositions that chemically react to form a single homogeneous bulk composition that is in thermodynamic equilibrium at ambient pressure and temperature.

Thermodynamic modelling

Prediction of mineral phase stability fields and physical properties by solving Gibbs free energy minimization and high-pressure–temperature equations for density and elastic parameters under the constraints of mineral-relevant solid-solution models; usually based on data from high-pressure–high-temperature experiments or ab initio property modelling.

Potential temperature

The temperature that a material would have if brought to the Earth’s surface in solid state while decompressing adiabatically (that is, without exchanging heat with the surroundings); this parameter facilitates the comparison of temperatures at different depths in the mantle.

Adiabat

A temperature–depth profile in convecting material that flows rapidly enough that no heat is exchanged with the surroundings; that is, temperatures increase with depth only because of isentropic compression and solid-state phase transitions.

Post-spinel

Refers to the (magnesium, iron) bridgmanite–magnesiowüstite high-pressure assemblage of minerals that ringwoodite (formerly known as γ-spinel) transforms to at lower-mantle pressures.

Post-garnet

Refers to the (magnesium, iron, calcium, aluminium) perovskite–magnesiowüstite high-pressure assemblage of minerals that garnet transforms to at lower-mantle pressures.

Precursors

A term used in this Review to refer to seismic phases that arrive before a surface-reflected phase because they are reflected off a subsurface discontinuity instead of the surface.

Receiver functions

Functions derived using a method of analysing seismic waveforms that enables the signal from a discontinuity structure below the recording station to be isolated.

Primordial

Originating from the time of Earth’s formation.

Seismic tomography

An inversion method used to image Earth’s volumetric interior structure using natural or human-induced seismic waves that traverse the Earth, preferably recorded along many different and crossing paths.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Goes, S., Yu, C., Ballmer, M.D. et al. Compositional heterogeneity in the mantle transition zone. Nat Rev Earth Environ 3, 533–550 (2022). https://doi.org/10.1038/s43017-022-00312-w

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s43017-022-00312-w

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing