Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Cosmic strings, superstrings and the evolution of the Universe

Abstract

For a wide variety of astronomical objects, the angular momentum is proportional to the square of the mass, and the constant of proportionality is comparable with that of string theories of particle physics, suggesting that the Universe has evolved through a hierarchical breaking of rotating pieces of string. I show here that if such a picture is correct, the more distant objects in the Universe should appear more string-like.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Brosche, P. Z. Astrophys. 57, 143–155 (1963).

    ADS  Google Scholar 

  2. Brosche, P. in Cosmology and Gravitation (Spin, Torsion, Rotation and Supergravity) (ed. Bergmann, P. G. & De Sabbata, V) 375–382 (Plenum, New York, 1980).

    Book  Google Scholar 

  3. Wesson, P. S. Phys. Rev. D23, 1730–1734 (1981).

    ADS  Google Scholar 

  4. Wesson, P. S. Astr. Astrophys. 119, 313–314 (1983).

    ADS  Google Scholar 

  5. Carrasco, L., Roth, M. & Serrano, A. Astr. Astrophys. 106, 89–93 (1982).

    ADS  Google Scholar 

  6. Wesson, P. S. Space Sci. Rev. 39, 153–161 (1984).

    Article  ADS  Google Scholar 

  7. Barger, V. & Cline, D. Phenomenological Theories of High Energy Scattering (Benjamin, New York, 1969).

  8. Marinov, M. S. Usp. Fiz. Nauk 121, 377–425 (1977); Soviet Phys. Usp. 20, 179–208 (1977).

    Article  CAS  Google Scholar 

  9. Olesen, P. Proc. IX Balaton Symp. on Particle Physics, 99–114 (Balatonfured, Budapest, 1975).

  10. Burden, C. J. & Tassie, L. J. Aust. J. Phys. 37, 1–7 (1984).

    Article  ADS  CAS  Google Scholar 

  11. Tassie, L. J. Phys. Lett. 46B, 397–398 (1973).

    Article  ADS  Google Scholar 

  12. Nielsen, H. B. & Olesen, P. Nucl. Phys. B61, 45–61 (1973).

    Article  ADS  Google Scholar 

  13. Kibble, T. W. B. Nucl. Phys. B252, 227–244 (1985).

    Article  ADS  Google Scholar 

  14. Vilenkin, A. Phys. Rep. 121, 263–315 (1985).

    Article  ADS  MathSciNet  CAS  Google Scholar 

  15. de Vega, H. J. & Schaposnik, F. A. Phys. Rev. D14, 1100–1106 (1976).

    ADS  Google Scholar 

  16. Vilenkin, A. Phys. Rev. Lett. 46, 1169–1172, 1496(E) (1981).

    Article  ADS  Google Scholar 

  17. Nanopoulos, D. V. in Proc. 12th int. Conf. on High Energy Physics, Leipzig, Vol. 2, 36–65 (Akademie der Wissenschaften der DDR, Zeuthen, 1984).

    Google Scholar 

  18. Koshiba, M. in Proc. 12th int. Conf. on High Energy Physics, Leipzig, Vol. 2, 67–82 (Akademie der Wissenschaften der DDR, Zeuthen, 1984).

    Google Scholar 

  19. Kibble, T. W. B., Lazarides, G. & Shafi, Q. Phys. Lett. 113B, 237–239 (1982).

    Article  ADS  CAS  Google Scholar 

  20. Scherk, J. & Schwarz, J. H. Nucl. Phys. B81, 118–144 (1974).

    Article  ADS  Google Scholar 

  21. Green, M. B. Nature 314, 409–414 (1985).

    Article  ADS  Google Scholar 

  22. Schwarz, J. H. Phys. Rep. 89, 223–322 (1982).

    Article  ADS  MathSciNet  CAS  Google Scholar 

  23. Green, M. B., Schwarz, J. H. & West, P. C. Nucl. Phys. B254, 327–348 (1985).

    Article  ADS  Google Scholar 

  24. Gross, D. J., Harvey, J. A., Martinec, E. & Rohm, R. Phys. Rev. Lett. 54, 502–505 (1985).

    Article  ADS  MathSciNet  CAS  Google Scholar 

  25. Gross, D. J., Harvey, J. A., Martinec, E. & Rohm, R. Nucl Phys. B267, 365–414 (1986).

    Article  Google Scholar 

  26. Kaplunovsky, V. S. Phys. Rev. Lett. 55, 1036–1038 (1985).

    Article  ADS  CAS  Google Scholar 

  27. Gott, J. R. Astrophys. J. 288, 422–427 (1985).

    Article  ADS  MathSciNet  Google Scholar 

  28. Aharonov, Y. & Casher, A. Phys. Lett. 166B, 289–291 (1986).

    Article  ADS  CAS  Google Scholar 

  29. Chiu, C. B. & Heimann, R. L. Phys. Rev. D4, 3184–3201 (1971).

    ADS  Google Scholar 

  30. Nahm, W. Nucl. Phys. B120, 125–146 (1977).

    Article  ADS  Google Scholar 

  31. Peebles, P. J. E. The Large-Scale Structure of the Universe (Princeton University Press, 1980).

    Google Scholar 

  32. Efstathiou, G. & Jones, B. J. T. Comments Astrophys. 8, 169–176 (1980).

    ADS  Google Scholar 

  33. Fall, S. M. IAU Symp. No. 100, 391–399 (1983).

    ADS  Google Scholar 

  34. Allen, S. W. Astrophysical Quantities 3rd edn (Athlone, London, 1973).

    Google Scholar 

  35. Miyamoto, M., Satoh, C. & Ohashi, M. Astrophys. Space Sci. 67, 147–171 (1980).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tassie, L. Cosmic strings, superstrings and the evolution of the Universe. Nature 323, 40–42 (1986). https://doi.org/10.1038/323040a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/323040a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing