Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Measuring interstellar dust grains from the haloes of binary X-ray sources

Abstract

Overbeck1 first predicted that the images of cosmic X-ray sources might have observable haloes due to coherent forward scattering by interstellar dust grains, and it was recognized that the observations of these haloes would provide a powerful tool for analysing the size distribution and composition of the grains2–5. Observations with the Einstein observatory have provided evidence of faint haloes extending to a few arc minutes beyond the X-ray images of supernova remnants6,7 and several compact galactic sources8–11. The evidence that the haloes are actually due to interstellar grain scattering appears substantial, but it is subject to some uncertainty resulting from the dependence of the point response function (PRF) of the telescope on the source spectra (the observed haloes are brighter than the predicted PRF by factors of approximately 1.5–2). In this letter we show how observations of the time-dependence of the halo X-ray emission may be analysed to determine the location, size distribution, and composition of interstellar grains. Indeed, it should be possible to observe and analyse the halo emission during eclipse even without imaging the source, and we suggest that such haloes probably account for the soft X-rays that have been observed during eclipses or dips in several binary systems.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Overbeck, J. W. Astrophys. J. 141, 864–866 (1965).

    Article  ADS  Google Scholar 

  2. Slysh, V. I. Nature 224, 159–161 (1969).

    Article  ADS  Google Scholar 

  3. Hayakawa, S. Prog. theor. Phys. 43, 1224–1230 (1970).

    Article  ADS  CAS  Google Scholar 

  4. Martin, P. G. & Sciama, D. W. Astrophys. Lett. 5, 193–196 (1970).

    ADS  CAS  Google Scholar 

  5. Martin, P. G., Mon. Not. R. Astr. Soc. 149, 221–235 (1970).

    Article  ADS  Google Scholar 

  6. Stewart, G. C., Fabian, A. C. & Seward, F. D. in Supernova Remnants and their X-Ray Emission (eds Danziger, J. & Gorenstein, P.) 59–64 (Reidel, Dordrecht, 1983).

    Book  Google Scholar 

  7. Mauche, C. W. & Gorenstein, P. in Proc. Workshop on the Crab Nebula and Related Supernova Remnants (eds Kafatos, M. C. & Henry, R. B. C.) 81–88 (Cambridge University Press, 1985).

    Google Scholar 

  8. Rolf, D. P. Nature 302, 46–48 (1983).

    Article  ADS  Google Scholar 

  9. Catura, R. C. Astrophys. J. 275, 645–651 (1983).

    Article  ADS  Google Scholar 

  10. Mauche, C. W. & Gorenstein, P. Astrophys. J. (in the press).

  11. Bode, M. F., Priedhorsky, W. C., Norwell, G. A. & Evans, A. Astrophys. J. 299, 845–851 (1985).

    Article  ADS  CAS  Google Scholar 

  12. Mathis, J. S., Rumpl, W. & Nordsieck, K. H. Astrophys. J. 217, 425–433 (1977).

    Article  ADS  CAS  Google Scholar 

  13. van de Hulst, H. C. Light Scattering by Small Particles (Wiley, New York, 1957).

    Book  Google Scholar 

  14. Trümper, J. & Shönfelder, V. Astron. Astrophys. 25, 445–450 (1973).

    ADS  Google Scholar 

  15. Spiegelhauer, H. & Trümper, J. J. Br. Interplanetary Soc. 28, 319–325 (1975).

    ADS  Google Scholar 

  16. Draine, B. T. & Lee, H. M. Astrophys. J. 285, 89–108 (1984).

    Article  ADS  CAS  Google Scholar 

  17. Alcock, C. & Hatchett, S. Astrophys. J. 222, 456–470 (1978).

    Article  ADS  Google Scholar 

  18. Morrison, R. & McCammon, D. Astrophys. J. 270, 119–122 1983.

    Article  ADS  CAS  Google Scholar 

  19. Spitzer, L. Jr Physical Processes in the Interstellar Medium (Wiley: New York, 1978).

    Google Scholar 

  20. Henke, B. L., Lee, P., Tanaka, T. J., Shimabukuro, R. L. & Fujikawa, B. K. Atomic Data and Nuclear Data Tables 27, 1–144 (1982).

    Article  ADS  CAS  Google Scholar 

  21. Schreier, E., Levinson, R., Gursky, H., Kellogg, E., Tananbaum, H. & Giacconi, R. Astrophys. J. Lett. 172, L79–89 (1972).

    Article  ADS  Google Scholar 

  22. White, N. E. in Interacting Binary Stars, Proc. NATO Institute for Advanced Studies (eds Eggleton, P. & Pringle, J.) 249–287 (Reidel, Dordrecht, 1985).

    Google Scholar 

  23. Kitamoto, S. et al. Publ. Astr. Soc. Japan 36, 731–740 (1984).

    ADS  CAS  Google Scholar 

  24. White, N. E. & Swank, J. H. Astrophys. J. 253, L61–L66 (1982).

    Article  ADS  CAS  Google Scholar 

  25. White, N. E. et al. Astrophys. J. 283, L9–L12 (1984).

    Article  ADS  CAS  Google Scholar 

  26. White, N. E. & Holt, S. S. Astrophys. J. 257, 318–337 (1983).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, Y., McCray, R. & Kelley, R. Measuring interstellar dust grains from the haloes of binary X-ray sources. Nature 319, 652–653 (1986). https://doi.org/10.1038/319652a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/319652a0

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing