Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Parity-violating energy differences of chiral minerals and the origin of biomolecular homochirality

Abstract

The biochemistry of terrestrial organisms is based on chiral (handed) molecules, with one of the two possible series of enantiomers (mirror-image isomers) being predominant. Specifically, terrestrial biochemistry is homochirally supported by L-α-amino acids and D-sugars to the almost complete exclusion of the enantiomeric D-α-amino acids and L-sugars. This particular homochiral selection may be a result of very small differences between the electronic energies of enantiomeric prebiotic molecules due to the parity-violating weak interactions. The energy differences are, however, so small for simple chiral molecules, that the propagation of homochirality would require a dissymmetry amplification mechanism involving both large quantities of reactants and a long reaction time. An alternative theory, presented here, considering the effects of the parity-violating weak interactions in crystalline enantio-selective prebiotic catalysts, such as the clay silicates, may require considerably less amplification.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1

    Fischer, E. Chem. Ber. 27, 2985–2993, 3189–3232 (1894).

    CAS  Article  Google Scholar 

  2. 2

    Joyce, G. F. et al. Nature 310, 602–604 (1984).

    ADS  CAS  Article  Google Scholar 

  3. 3

    Idelson, M. & Blout, E. R. J. Am. chem. Soc. 80, 2387–2393 (1958).

    CAS  Article  Google Scholar 

  4. 4

    Blair, N. E., Dirbas, F. M. & Bonner, W. A. Tetrahedron 37, 27–29 (1981).

    CAS  Article  Google Scholar 

  5. 5

    Mason, S. F. Nature 311, 19–23 (1984).

    ADS  CAS  Article  Google Scholar 

  6. 6

    Weinberg, S. Phys. Rev. Lett. 19, 1264–1266 (1967).

    ADS  Article  Google Scholar 

  7. 7

    Salam, A. in Proc. 8th Nobel Symp. Elementary Particle Physics (ed Svartholm, N.) 367 (Almquist and Wiksell, Stockholm, 1968).

    Google Scholar 

  8. 8

    Rein, D. W. J. molec. Evol. 4, 15–22 (1974).

    ADS  CAS  Article  Google Scholar 

  9. 9

    Zel'dovich, B. Ya., Saakyan, D. B. & Sobel'man, I. I. Soviet Phys. J. exp. theor. Phys. 25, 94–97 (1977).

    ADS  Google Scholar 

  10. 10

    Rein, D. W., Hegstrom, R. A. & Sandars, P. G. H. Phys. Lett. A 71, 499–502 (1979).

    Article  Google Scholar 

  11. 11

    Hegstrom, R. A., Rein, D. W. & Sandars, P. G. H. J. chem. Phys. 73, 2329–2341 (1980).

    ADS  CAS  Article  Google Scholar 

  12. 12

    Mason, S. F. & Tranter, G. E. Molec. Phys. 53, 1091–1111 (1984).

    ADS  CAS  Article  Google Scholar 

  13. 13

    Mason, S. F. & Tranter, G. E. Proc. R. Soc. A397, 45–65 (1985).

    ADS  CAS  Article  Google Scholar 

  14. 14

    Tranter, G. E. Chem. Phys. Lett. 120, 93–96 (1985).

    ADS  CAS  Article  Google Scholar 

  15. 15

    Tranter, G. E. Molec. Phys. (in the press).

  16. 16

    Tranter, G. E. Chem. Phys. Lett. 115, 286–290 (1985).

    ADS  CAS  Article  Google Scholar 

  17. 17

    Frank, F. C. Biochim biophys. Acta 11, 459–463 (1953).

    CAS  Article  Google Scholar 

  18. 18

    Kondepudi, D. K. & Nelson, G. W. Phys. Rev. Lett. 50, 1023–1026 (1983).

    ADS  CAS  Article  Google Scholar 

  19. 19

    Kondepudi, D. K. & Nelson, G. W. Phys. Lett. 106A, 203–206 (1984).

    Article  Google Scholar 

  20. 20

    Kondepudi, D. K. & Nelson, G. W. Nature 314, 438–441 (1985).

    ADS  CAS  Article  Google Scholar 

  21. 21

    Yagamata, Y. J. theor. Biol. 11, 495–498 (1966).

    Article  Google Scholar 

  22. 22

    Keszthelyi, L. Phys. Lett. 64A, 287–288 (1977).

    Article  Google Scholar 

  23. 23

    Palache, C., Berman, H. & Frondel, C. in Dana's System of Mineralogy, 7th edn, Vol. 3, 16 (Wiley, New York, 1962).

    Google Scholar 

  24. 24

    Thiemann, W. & Darge, W. Origins Life 5, 263–283 (1974).

    ADS  CAS  Article  Google Scholar 

  25. 25

    Kovacs, K. L. Origins Life 9, 219–233 (1979); 11, 37–52 (1981).

    ADS  CAS  Article  Google Scholar 

  26. 26

    Cairns-Smith, A. G. in Genetic Takeover and the Mineral Origins of Life (Cambridge University Press, 1982).

    Google Scholar 

  27. 27

    Schwartz, A. W. & Orgel, L. E. J. molec. Evol. 21, 299–300 (1985).

    ADS  CAS  Article  Google Scholar 

  28. 28

    Coyne, L., Sweeney, M. & Hovatter, W. J. Lumin. 28, 395–409 (1983).

    CAS  Article  Google Scholar 

  29. 29

    Kavasmaneck, P. R. & Bonner, W. A. J. Am. chem. Soc. 99, 44–50 (1977).

    CAS  Article  Google Scholar 

  30. 30

    Furuyama, S., Sawada, M., Machiya, K. & Morimoto, T. Bull. chem. Soc. Jap. 55, 3394–3397 (1982).

    CAS  Article  Google Scholar 

  31. 31

    Weissbuch, I. et al. Nature 310, 161–162 (1984).

    ADS  CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Tranter, G. Parity-violating energy differences of chiral minerals and the origin of biomolecular homochirality. Nature 318, 172–173 (1985). https://doi.org/10.1038/318172a0

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing