Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Isolation and properties of small-bandgap fullerenes

Abstract

The diversity of molecular structures exhibited by fullerenes1 suggests a wide range of interesting and useful properties. Several fullerenes are now considered to be well characterized, but only minor variations in their chemical and physical properties have been observed2. Here we show that there are in fact two distinct classes of fullerenes, with some very different chemical properties. Members of the first class, typified by C60 and C70, have large energy gaps between the highest occupied and lowest unoccupied molecular orbitals (HOMO and LUMO), and are soluble in many organic solvents. The second, previously unrecognized class is represented by C74 and selected isomers of the higher fullerenes, such as that of C80 with icosahedral symmetry: these are either free radicals or have small HOMO–LUMO gaps. Like radical metallofullerenes, they are kinetically unstable and react readily to form insoluble, polymerized solids. These intermolecular bonds can be broken by electrochemical reduction. After reducing them to soluble anions, we have been able to isolate and characterize these new fullerenes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Kohn–Sham orbital energy levels of C60 and C74.
Figure 2: Positive ion laser desorption (Nd:YAG third harmonic at 355 nm) mass spectra of empty fullerenes at different process stages.
Figure 3: LDMS of Gd-metallofullerenes at different process stages.
Figure 4: Square-wave voltammetry (SWV) of the different fullerene classes in 0.1 M (n-Bu)4NPF6/BzCN at room temperature.

Similar content being viewed by others

References

  1. Fowler, P. W. & Manolopoulous, D. E. An Atlas of Fullerenes (Clarendon, Oxford, (1995)).

    Google Scholar 

  2. Dresselhaus, M. S., Dresselhaus, G. & Eklund, P. C. Science of Fullerenes and Carbon Nanotubes (Academic, San Diego, (1996)).

    Google Scholar 

  3. Kratschmer, W., Lamb, L. D., Fotiropoulos, K. & Huffman, D. Solid C60: a new form of carbon. Nature 347, 354–356 (1990).

    Article  ADS  Google Scholar 

  4. Taylor, R., Hare, J. P., Abdul-Sada, A. & Kroto, H. W. Isolation, separation and characterization of the fullerenes C60and C70: The third form of carbon. J. Chem. Soc., Chem. Commun. 20, 1423–1425 (1990).

    Article  Google Scholar 

  5. Diederich, F. & Whetten, R. L. Beyond C60: The higher fullerenes. Acc. Chem. Res. 25, 119–126 (1992).

    Article  CAS  Google Scholar 

  6. Kikuchi, K. et al. Isolation and identification of fullerene family: C76, C78, C82, C84, C90and C96. Chem. Phys. Lett. 188, 177–180 (1992).

    Article  ADS  CAS  Google Scholar 

  7. Saito, S., Okada, S., Sawada, A. & Hamada, N. Common electronic structure and pentagon pairing in extractable fullerenes. Phys. Rev. Lett. 75, 685–688 (1995).

    Article  ADS  CAS  Google Scholar 

  8. Weaver, J. H. et al. Electronic structures of solid C60: Experiment and theory. Phys. Rev. Lett. 66, 1741–1744 (1991).

    Article  ADS  CAS  Google Scholar 

  9. Hino, S., Kikuchi, K. & Achiba, Y. Photoelectron spectra of higher fullerenes and their potassium complexes. Synth. Metals 70, 1337–1340 (1995).

    Article  CAS  Google Scholar 

  10. Yang, Y. et al. Reversible fullerene electrochemistry: correlation with the HOMO-LUMO energy difference for C60, C70, C76, C78, and C84. J. Am. Chem. Soc. 117, 7801–7804 (1995).

    Article  CAS  Google Scholar 

  11. Liu, X., Schmalz, T. G. & Klein, D. J. Favorable structures for higher fullerenes. Chem. Phys. Lett. 188, 550–554 (1992).

    Article  ADS  CAS  Google Scholar 

  12. Zhang, B. L., Wang, C. Z., Ho, K. M. & Chan, C. T. The geometry of large fullerene cages: C72to C100. J. Chem. Phys. 98, 3095–3102 (1993).

    Article  ADS  CAS  Google Scholar 

  13. Xu, Z., Nakane, T. & Shinohara, H. Production and isolation of Ca@C82(I–IV) and Ca@C84(1–II) Metallofullerenes. J. Am. Chem. Soc. 118, 11309–11310 (1996).

    Article  CAS  Google Scholar 

  14. Cummins, T. R. et al. Electronic states and molecular symmetry of the higher fullerene C80. Chem. Phys. Lett. 261, 228–233 (1996).

    Article  ADS  CAS  Google Scholar 

  15. Nakao, K., Kurita, N. & Fujita, M. Ab initio molecular-orbital calculation for C70and seven isomers of C80. Phys. Rev. B 49, 11415–11420 (1994).

    Article  ADS  CAS  Google Scholar 

  16. Kobayashi, K., Nagase, S. & Akasaka, T. Atheoretical study of C80and La2@C80. Chem. Phys. Lett. 245, 230–236 (1995).

    Article  ADS  CAS  Google Scholar 

  17. Beer, F., Gugel, A., Martin, K., Rader, J. & Mullen, K. High-yield reactive extraction of giant fullerenes from soot. J. Mater. Chem. 7, 1327–1330 (1997).

    Article  CAS  Google Scholar 

  18. Chai, Y. et al. Fullerenes with metals inside. J. Phys. Chem. 95, 7564–7568 (1991).

    Article  CAS  Google Scholar 

  19. Wang, L. S. et al. The electronic structure of Ca@C60. Chem. Phys. Lett. 207, 354–359 (1993).

    Article  ADS  CAS  Google Scholar 

  20. Boltalina, O. V., Ioffe, I. N., Sorokin, I. D. & Sidorov, L. N. Electron affinity of some endohedral lanthanide fullerenes. J. Phys. Chem. 101, 9561–9563 (1997).

    Article  CAS  Google Scholar 

  21. Suzuki, T. et al. Electrochemical properties of fullerenolanthanides. Tetrahedron 52, 4973–4982 (1996).

    Article  CAS  Google Scholar 

  22. Hummelen, J. C., Knight, B., Pavlovich, J., Gonzalez, R. & Wudl, F. Isolation of the heterofullerene C59N as its dimer (C59N)2. Science 269, 1554–1556 (1995).

    Article  ADS  CAS  Google Scholar 

  23. Gromov, A., Kratschmer, W. & Campbell, E. Extraction and HPLC purification of Li@C60/70. Chem. Commun. 20, 2003–2004 (1997).

    Article  Google Scholar 

  24. Pekker, S. et al. Single-crystalline (KC60)n: A conducting linear alkali fulleride polymer. Science 265, 1077–1078 (1994).

    Article  ADS  CAS  Google Scholar 

  25. Yeretzian, C. et al. Partial separation of fullerenes by gradient sublimation. J. Phys. Chem. 97, 10097–10101 (1993).

    Article  CAS  Google Scholar 

  26. Koh, W., Dubois, D., Kutner, W., Jones, M. T. & Kadish, K. M. Simultaneous cyclic voltammetry and electrochemical quartz crystal microbalance studies of buckminsterfullerene (C60) film electrodeposition and tetra-n-butylammonium electrodoping in acetonitrile. J. Phys. Chem. 96, 4163–4165 (1992).

    Article  CAS  Google Scholar 

  27. Xie, Q., Perez-Cordero, E. & Echegoyen, L. Electrochemical Detection of C606− and C706−: Enhanced stability of fullerides in solution. J. Am. Chem. Soc. 114, 3978–3980 (1992).

    Article  CAS  Google Scholar 

  28. Frisch, M. J. et al. Gaussian 94, Rev. E.1 (Gaussian, Inc., Pittsburgh, PA, (1995)).

  29. Green, W. H. J et al. Electronic structures and geometries of C60anions via density functional calculations. J. Phys. Chem. 100, 14892–14898 (1996).

    Article  CAS  Google Scholar 

  30. Weaver, M. J. & Gao, X. Molecular capacitance: Sequential electron-transfer energetics for solution-phase metallic clusters in relation to gas-phase clusters and analogous interfaces. J. Phys. Chem. 97, 332–338 (1993).

    Article  CAS  Google Scholar 

  31. Haddon, R. C. Chemistry of the fullerenes: the manifestation of strain in a class of continuous aromatic molecules. Science 26, 1545–1550 (1993).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank W. Bell, R. Cook, S. Dietz and J. Wright at TDA Research, L. Wilson at Rice University, and K. Veirs at LANL for productive technical discussions. This work was funded by a NSF SBIR grant to J.M.A.

Author information

Authors and Affiliations

Authors

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Diener, M., Alford, J. Isolation and properties of small-bandgap fullerenes. Nature 393, 668–671 (1998). https://doi.org/10.1038/31435

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/31435

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing