Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

DNA sequences of telomeres maintained in yeast

Abstract

Telomeres, the ends of eukaryotic chromosomes, have long been recognized as specialized structures. Their stability compared with broken ends of chromosomes1,2 suggested that they have properties which protect them from fusion, degradation or recombination1,3,4. Furthermore, a linear DNA molecule such as that of a eukaryotic chromosome must have a structure at its ends which allows its complete replication5–8, as no known DNA polymerase can initiate synthesis without a primer. At the ends of the relatively short, multi-copy linear DNA molecules found naturally in the nuclei of several lower eukaryotes, there are simple tandemly repeated sequences9–17 with, in the cases analysed, a specific array of single-strand breaks, on both DNA strands, in the distal portion of the block of repeats9,10,17. In general, however, direct analysis of chromosomal termini presents problems because of their very low abundance in nuclei. To circumvent this problem, we have previously cloned a chromosomal telomere of the yeast Saccharomyces cerevisiae on a linear DNA vector molecule18. Here we show that yeast chromosomal telomeres terminate in a DNA sequence consisting of tandem irregular repeats of the general form C1–3A. The same repeat units are added to the ends of Tetrahymena telomeres, in an apparently non-template-directed manner, during their replication on linear plasmids in yeast. Such DNA addition may have a fundamental role in telomere replication.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

References

  1. McClintock, B. Genetics 23, 315–376 (1938).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Muller, H. J. Collecting Net 13, 181–198 (1938).

    Google Scholar 

  3. McClintock, B. Genetics 26, 234–282 (1941).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Orr-Weaver, T. L., Szostak, J. W. & Rothstein, R. J. Proc. natn. Acad. Sci U.S.A. 78, 6354–6358 (1981).

    Article  ADS  CAS  Google Scholar 

  5. Watson, J. D. Nature new Biol. 239, 197–201 (1972).

    Article  CAS  PubMed  Google Scholar 

  6. Cavalier-Smith, T. Nature 250, 467–470 (1974).

    Article  ADS  CAS  PubMed  Google Scholar 

  7. Bateman, A. J. Nature 253, 379 (1975).

    Article  ADS  CAS  PubMed  Google Scholar 

  8. Dancis, B. M. & Holmquist, G. P. J. theor. Biol. 78, 211–224 (1979).

    Article  CAS  PubMed  Google Scholar 

  9. Blackburn, E. H. & Gall, J. G. J. molec. Biol. 120, 33–53 (1978).

    Article  CAS  PubMed  Google Scholar 

  10. Johnson, E. M. Cell 22, 875–886 (1980).

    Article  CAS  PubMed  Google Scholar 

  11. Emery, H. S. & Weiner, A. M. Cell 26, 411–419 (1981).

    Article  CAS  PubMed  Google Scholar 

  12. Katzen, A. L., Cann, G. M. & Blackburn, E. H. Cell 24, 313–320 (1981).

    Article  CAS  PubMed  Google Scholar 

  13. Oka, Y., Shiota, S., Nakai, S., Nishida, Y. & Okubo, S. Gene 10, 301–306 (1980).

    Article  CAS  PubMed  Google Scholar 

  14. Herrick, G. & Wesley, R. D. Proc. natn. Acad. Sci. USA. 75, 2626–2630 (1978).

    Article  ADS  CAS  Google Scholar 

  15. Klobutcher, L. A., Swanton, M. A., Donini, P. & Prescott, D. M. Proc. natn. Acad. Sci. U.S.A. 78, 3015–3019 (1981).

    Article  ADS  CAS  Google Scholar 

  16. Pluta, A. F., Kaine, B. P. & Spear, B. B. Nucleic Acids Res. 10, 8145–8154 (1982).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Blackburn, E. H. et al. Cold Spring Harb. Symp. quant. Biol. 47, 1195–1207 (1983).

    Article  PubMed  Google Scholar 

  18. Szostak, J. W. & Blackburn, E. H. Cell 29, 245–255 (1982).

    Article  CAS  PubMed  Google Scholar 

  19. Maxam, A. & Gilbert, W. Meth. Enzym. 65, 499–559 (1980).

    Article  CAS  PubMed  Google Scholar 

  20. Chan, C. S. M. & Tye, B.-K. Cell 33, 563–573 (1983).

    Article  CAS  PubMed  Google Scholar 

  21. Stinchcomb, D. T. et al. in The Initiation of DNA Replication (ed. Ray, D. S.) 473–488 (Academic, New York, 1981).

    Book  Google Scholar 

  22. Walmsley, R. W., Chan, C. S. M., Tye, B.-K. & Petes, T. D. Nature 310, 157–160 (1984).

    Article  ADS  CAS  PubMed  Google Scholar 

  23. Walmsley, R. W., Szostak, J. W. & Petes, T. D. Nature 302, 84–86 (1983).

    Article  ADS  CAS  PubMed  Google Scholar 

  24. Kiss, G. B., Amin, A. A. & Pearlman, R. E. Molec. cell. Biol. 1, 535–543 (1981).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Bernards, A., Michels, P. A. M., Lincke, C. R. & Borst, P. Nature 303, 592–597 (1983).

    Article  ADS  CAS  PubMed  Google Scholar 

  26. Blackburn, E. H. et al. UCLA Symp. Molec. Cell. Biol. 20 (in the press).

  27. Heumann, J. M. Nucleic Acids Res. 3, 3167–3171 (1976).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Goldbach, R. W., Ballen-de Boor, J. E., van Bruggen, E. F. J. & Borst, P. B. B. Biochim. biophys. Acta 562, 400–417 (1979).

    Article  CAS  PubMed  Google Scholar 

  29. Din, N. & Engberg, J. J. molec. Biol. 134, 555–574 (1979).

    Article  CAS  PubMed  Google Scholar 

  30. Maniatis, T., Fritsch, E. F. & Sambrook, J. Molecular Cloning, a Laboratory Manual (Cold Spring Harbor Laboratory, New York, 1982).

    Google Scholar 

  31. Sutcliffe, J. G. Cold Spring Harb. Symp. quant. Biol. 43, 77–90 (1979).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Shampay, J., Szostak, J. & Blackburn, E. DNA sequences of telomeres maintained in yeast. Nature 310, 154–157 (1984). https://doi.org/10.1038/310154a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/310154a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing