Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Current generated by backward-running electrogenic Na pump in squid giant axons

Abstract

The sodium pump of animal cells is electrogenic1,2, that is, it normally exports more sodium ions than it imports potassium ions3. In the squid giant axon, the resulting net outward electric current4has a density of a few µ A cm−2, and contributes 1–2 mV to the resting membrane potential5,6. The pump is driven by the free energy of hydrolysis of ATP, and in some instances7–10 it has been possible to run the pump backwards and synthesize ATP by lowering the [ATP]/[ADP] · [Pi] ratio and steepening the transmem-brane Na+ and K+ gradients. Here we have examined the question of whether a backward-running sodium pump conserves its Na+/K+ > 1 stoichiometry. We demonstrate reversal of the sodium pump of squid giant axon, and find that backward pumping indeed produces a net inward electric current. This current is voltage sensitive. Our observations have mechanistic implications for models of the sodium pump.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Thomas, R. C. Physiol. Rev. 52, 563–594 (1972).

    Article  CAS  Google Scholar 

  2. De Weer, P. in MTP International Review of Science, Physiology Ser. 1, Vol. 3 (ed. Hunt, C. C.) 231–278 (Butterworths, London 1975).

    Google Scholar 

  3. Sen, A. K. & Post, R. L. J. biol Chem. 239, 345–352 (1964).

    CAS  PubMed  Google Scholar 

  4. Abercrombie, R. F. & De Weer, P. Am. J. Physiol. 235, C63–C68 (1978).

    Article  CAS  Google Scholar 

  5. De Weer, P. & Geduldig, D. Science 179, 1326–1328 (1973).

    Article  ADS  CAS  Google Scholar 

  6. De Weer, P. & Geduldig, D. Am. J. Physiol. 235, C55–C62 (1978).

    Article  CAS  Google Scholar 

  7. Garrahan, P. J. & Glynn, I. M. J. Physiol., Lond. 192, 237–256 (1967).

    Article  CAS  Google Scholar 

  8. Lant, A. F. & Whittam, R. J. Physiol., Lond. 199, 457–84 (1968).

    Article  CAS  Google Scholar 

  9. Lew, V. L., Glynn, I. M. & Ellory, J. C. Nature 225, 865–866 (1970).

    Article  ADS  CAS  Google Scholar 

  10. Chmouliovsky, M. & Straub, R. W. Pflügers Arch. ges. Physiol. 350, 309–320 (1974).

    Article  CAS  Google Scholar 

  11. Brinley, F. J. Jr & Mullins, L. J. J. gen. Physiol. 50, 2303–2331 (1967).

    Article  CAS  Google Scholar 

  12. De Weer, P. Ann. N.Y. Acad. Sci. 242, 434–444 (1974).

    Article  ADS  CAS  Google Scholar 

  13. Glynn, I. M. & Huffman, J. F. J. Physiol., Lond. 218, 239–256 (1971).

    Article  CAS  Google Scholar 

  14. Glynn, I. M., Lew, V. L. & Luthi, V. J. Physiol., Lond. 207, 371–391 (1970).

    Article  CAS  Google Scholar 

  15. Simons, T. J. B. J. Physiol., Lond. 237, 123–155 (1974).

    Article  CAS  Google Scholar 

  16. De Weer, P. in Electrogenic Transport: Fundamental Principles and Physiological Implications (eds Blaustein, M. P. & Lieberman, M.) 1–15 (Raven, New York, 1984).

    Google Scholar 

  17. Gradmann, D., Hansen, U.-P. & Slayman, C. L. Curr. Topics Membrane Transport 16, 257–276 (1982).

    Article  CAS  Google Scholar 

  18. Glynn, I. M. in Electrogenic Transport: Fundamental Principles and Physiological Implications (eds Blaustein, M. P. & Lieberman, M.) 33–48 (Raven, New York, 1984).

    Google Scholar 

  19. Yeh, J. Z., Oxford, G. S., Wu, C. H. & Narahashi, T. J. gen. Physiol. 68, 519–535 (1976).

    Article  CAS  Google Scholar 

  20. De Weer, P. J. gen. Physiol. 68, 159–178 (1976).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Weer, P., Rakowski, R. Current generated by backward-running electrogenic Na pump in squid giant axons. Nature 309, 450–452 (1984). https://doi.org/10.1038/309450a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/309450a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing