Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Hydroxyl radical scavengers inhibit human natural killer cell activity

Abstract

As natural killer (NK) cell activity is an essential constituent of host defence systems1 and reactive oxygen intermediates participate in such defence2–4, the effect of scavengers of oxygen radicals on NK cell activity was investigated. Hydroxyl radical (OH·) scavengers5 (dimethyl sulphoxide (DMSO), thiourea, dimethylurea, tetramethylurea, benzoic acid, ethanol, methanol and ethylene glycol) inhibited NK cell activity. Catalase, a scavenger of H2O2, and Superoxide dismutase (SOD), a scavenger of O2, either alone or in combination, did not inhibit NK cell activity. Inhibition of the lipoxygenase pathway of arachidonic acid metabolism, a potential source of cellular OH·, with nordihydroguaiaretic acid6 and 5,8,11,14-eicosatetraynoic acid (ETYA)7 resulted in marked inhibition of NK cell activity. Inhibition of the cyclooxygenase pathway7,8 with acetylsalicylic acid or indomethacin had minimal effects on NK cell activity. Taken together, these findings suggest that OH·, possibly generated via the lipoxygenase pathway of arachidonic acid metabolism, is critical for NK cell cytotoxicity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Herberman, R. B. NK Cells and Other Natural Effector Cells (Academic, New York, 1982).

    Google Scholar 

  2. Babior, B. M. New Engl. J. Med. 298, 659–668, 721–725 (1978).

    Article  CAS  Google Scholar 

  3. Klebanoff, S. J. Semin. Hemat. 12, 117–142 (1975).

    CAS  Google Scholar 

  4. Badwey, J. A. & Karnovsky, M. L. A. Rev. Biochem. 49, 695–726 (1980).

    Article  CAS  Google Scholar 

  5. Dorfman, L. M. & Adams, G. E. Natn. Stand. Ref. Data Serv. U.S.A. 46, 1–59 (1973).

    Google Scholar 

  6. Tappel, A. L., Lundberg, W. & Boyer, P. D. Am. Biochem. Biophys. 42, 293–304 (1953).

    Article  CAS  Google Scholar 

  7. Ahern, D. G. & Downing, D. T. Biochim. biophys. Acta 210, 456–461 (1970).

    Article  CAS  Google Scholar 

  8. Flower, R. J. Pharmac. Rev. 26, 33–67 (1974).

    CAS  Google Scholar 

  9. Roder, J. C. et al. Immunology 40, 107–116 (1980).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Suthanthiran, M. et al. Regulatory Mechanisms in Lymphocyte Activation (ed. Lucus, D. O.) 362–364 (Academic, New York, 1976).

    Google Scholar 

  11. Novogrodsky, A., Ravid, A., Rubin, A. L. & Stenzel, K. H. Proc. natn. Acad. Sci. U.S.A. 79, 1171–1174 (1982).

    Article  ADS  CAS  Google Scholar 

  12. Fridovich, I. Science 201, 875–880 (1978).

    Article  ADS  CAS  Google Scholar 

  13. Haber, F. & Weiss, J. Proc. R. Soc. A147, 332–351 (1934).

    ADS  CAS  Google Scholar 

  14. Roder, J. C. et al. Nature 298, 569–572 (1982).

    Article  ADS  CAS  Google Scholar 

  15. Kuehl, F. A. Jr & Egan, R. W. Science 210, 978–984 (1980).

    Article  ADS  CAS  Google Scholar 

  16. Hoffman, J. et al. Proc. natn. Acad. Sci. U.S.A. 78, 3839–3843 (1981).

    Article  ADS  CAS  Google Scholar 

  17. Henderson, W. R., Chi, E. Y., Jorg, A. & Klebanoff, S. J. Am. J. Path. 111, 341–349 (1983).

    CAS  PubMed  Google Scholar 

  18. Carpen, O., Virtanen, I. & Sakesla, E. Cell Immun. 58, 97–106 (1981).

    Article  CAS  Google Scholar 

  19. Quan, P. C., Ishizaka, I. & Bloom, B. R. J. Immun. 12 B, 1786–1791 (1982).

    Google Scholar 

  20. Fong, K. L., McCay, P. B., Poyer, J. L., Keele, B. B. & Misra, H. J. biol. Chem. 248, 7792–7797 (1973).

    CAS  PubMed  Google Scholar 

  21. Mittal, C. K. & Murad, F. Proc. natn. Acad. Sci. U.S.A. 74, 4360–4364 (1977).

    Article  ADS  CAS  Google Scholar 

  22. Haddox, M. K., Stephenson, J. H., Moser, M. E. & Goldberg, N. D. J. biol. Chem. 253, 3143–3152 (1978).

    CAS  PubMed  Google Scholar 

  23. Suthanthiran, M., Stenzel, K. H., Rubin, A. L. & Novogrodsky, A. Cell Immun. 50, 379–391 (1980).

    Article  CAS  Google Scholar 

  24. Timonen, T. & Saksela, E. J. immunol. Meth. 36, 285–291 (1980).

    Article  CAS  Google Scholar 

  25. Novogrodsky, A., Rubin, A. L. & Stenzel, K. H. J. Immun. 122, 1–7 (1979).

    CAS  PubMed  Google Scholar 

  26. Li, C. Y., Lam, K. W. & Yam, L. T. J. histochem. Cytochem. 21, 1–12 (1973).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Suthanthiran, M., Solomon, S., Williams, P. et al. Hydroxyl radical scavengers inhibit human natural killer cell activity. Nature 307, 276–278 (1984). https://doi.org/10.1038/307276a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/307276a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing