Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

A chimaeric antibiotic resistance gene as a selectable marker for plant cell transformation

Abstract

The T-DNA region of Agrobacterium tumefaciens tumour-inducing plasmids of the nopaline type1 contains a gene coding for the enzyme nopaline synthase. This gene is expressed constitutively in host plant cells to which it is transferred during tumour induction2. We have exploited the regulatory elements of this gene to construct a chimaeric gene that confers antibiotic resistance on transformed plant cells. The chimaeric gene encodes the expected chimaeric transcripts in plant cells, and confers on transformed cells the ability to grow in the presence of normally lethal levels of the antibiotic G418 (ref. 3). Experiments using in vitro transformation techniques on single plant cells indicate that this antibiotic resistance can be used as a selectable marker, and can therefore be used in selecting cells transformed by T-DNA vectors that have had the genes for hormone autotrophy deleted4. Plant cells transformed by such ‘disarmed’ T-DNA vectors can be regenerated into entire plants, whose sexual progeny contain unaltered copies of the inciting T-DNA5. The availability of this dominant selectable marker should allow a wider range of experiments to be under taken using different host plants.

Your institute does not have access to this article

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

References

  1. Leemans, J. et al. J. molec. appl. Genet. 1, 149–164 (1981).

    CAS  Google Scholar 

  2. Wullems, G. J., Molendijk, L., Ooms, G. & Schilperoort, R. A. Cell 24, 719–727 (1981).

    CAS  Article  Google Scholar 

  3. Colbere-Garapin, F., Horodniceanu, F., Kourilsky, P. & Garapin, A.-C. J. molec. Biol. 150, 1–14 (1981).

    CAS  Article  Google Scholar 

  4. Leemans, J. et al. J. molec. appl. Genet. 1, 149–164 (1981).

    CAS  Google Scholar 

  5. Barton, K. A., Binns, A. N., Matzke, A. J. M. & Chilton, M.-D. Cell 32, 1033–1043 (1983).

    CAS  Article  Google Scholar 

  6. Depicker, A., Stachel, S., Dhaese, P., Zambryski, P. & Goodman, H. M. J. molec. appl. Genet. 1, 561–573 (1982).

    CAS  Google Scholar 

  7. Bevan, M., Barnes, W. M. & Chilton, M.-D. Nucleic Acids Res. 11, 369–385 (1983).

    CAS  Article  Google Scholar 

  8. Sanger, F., Nicklen, S. & Coulson, A. R. Proc. natn. Acad. Sci. U.S.A. 74, 5463–5467 (1977).

    ADS  CAS  Article  Google Scholar 

  9. Messing, J., Crea, R. & Seeburg, P. H. Nucleic Acids Res. 9, 309–323 (1981).

    CAS  Article  Google Scholar 

  10. Matzke, A. J. M. & Chilton, M.-D. J. molec. appl. Genet. 1, 39–49 (1981).

    CAS  Google Scholar 

  11. Oka, A., Sugisaki, H. & Takanami, M. J. molec. Biol. 147, 217–226 (1981).

    CAS  Article  Google Scholar 

  12. de Framond, A. J., Barton, K. A. & Chilton, M.-D. Bio/Technology 1, 262–269 (1983).

    Google Scholar 

  13. Rothstein, S. J., Jorgenson, R. A., Postle, K. & Reznikoff, W. S. Cell 19, 795–805 (1980).

    CAS  Article  Google Scholar 

  14. Auerswald, E. A., Ludwig, G. & Schaller, H. Cold Spring Harb. Symp. quant. Biol. 45, 107–113 (1980).

    Article  Google Scholar 

  15. Holsters, M. et al. Molec. gen. Genet. 163, 181–187 (1978).

    CAS  Article  Google Scholar 

  16. Murashige, T. & Skoog, F. Pl. Physiol. 15, 473–497 (1962).

    CAS  Article  Google Scholar 

  17. Meins, F. & Binns, A. Proc. natn. Acad. Sci. U.S.A. 74, 2928–2932 (1977).

    ADS  Article  Google Scholar 

  18. Chilton, M.-D. et al. Nature 295, 432–434 (1982).

    ADS  CAS  Article  Google Scholar 

  19. Southern, E. M. J. molec. Biol. 98, 503–517 (1975).

    CAS  Article  Google Scholar 

  20. Maniatis, T., Jeffrey, A. & Kleid, D. G. Proc. natn. Acad. sci. U.S.A. 72, 1184–1188 (1975).

    ADS  CAS  Article  Google Scholar 

  21. Depicker, A. et al. Plasmid 3, 193–211 (1980).

    CAS  Article  Google Scholar 

  22. Rave, N., Ckvenjakov, R. & Boedtker, H. Nucleic Acids Res. 6, 3559–3567 (1979).

    CAS  Article  Google Scholar 

  23. Thomas, P. S. Proc. natn. Acad. Sci. U.S.A. 77, 5201–5205 (1981).

    ADS  Article  Google Scholar 

  24. Bevan, M. W. & Chilton, M.-D. J. molec. appl. Genet. 1, 539–546 (1982).

    CAS  Google Scholar 

  25. Wullems, G. J., Molendijk, L., Ooms, G. & Schilperoort, R. A. Proc. natn. Acad. Sci. U.S.A. 78, 4344–4348 (1981).

    ADS  CAS  Article  Google Scholar 

  26. Green, M. R. & Roeder, R. G. Cell 22, 231–242 (1980).

    CAS  Article  Google Scholar 

  27. Bolivar, F. Gene 4, 121–136 (1978).

    CAS  Article  Google Scholar 

  28. Ditta, G., Stansfield, S., Corbin, D. & Helinski, D. Proc. natn. Acad. Sci. U.S.A. 77, 7347–7351 (1980).

    ADS  CAS  Article  Google Scholar 

  29. Thomashow, M. F. et al. Proc. natn. Acad. Sci. U.S.A. 77, 6448–6452 (1980).

    ADS  CAS  Article  Google Scholar 

  30. Aviv, H. & Leder, P. Proc. natn. Acad. Sci. U.S.A. 69, 1408–1412 (1972).

    ADS  CAS  Article  Google Scholar 

  31. Herrera-Estrella, L., Depicker, A., Van Montagu, M. & Schell, J. Nature 303, 209–213 (1983).

    ADS  CAS  Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Bevan, M., Flavell, R. & Chilton, MD. A chimaeric antibiotic resistance gene as a selectable marker for plant cell transformation. Nature 304, 184–187 (1983). https://doi.org/10.1038/304184a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/304184a0

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing