Z-DNA immunoreactivity in rat tissues

Article metrics

  • An Erratum to this article was published on 25 August 1983

Abstract

Recently, it has been shown that natural and synthetic deoxynucleotide polymers can adopt a left-handed helical structure (termed Z-DNA) in appropriate conditions (see, for example, refs 1 and 2 and the references therein). In contrast to the more familiar right-handed B-DNA, Z-DNA is strongly immunogenic, and polyclonal and monoclonal antibodies against Z-DNA have been elicited3–6. By using such antibodies, immunoreactivity for Z-DNA has been detected in the polytene chromosomes of two dipteran species7–9, in the macronucleus of a ciliated protozoon10, and in certain plant nuclei (cited in ref. 11). In view of the possible importance of Z-DNA as a genomic regulatory signal7, it would be highly desirable to know whether Z-DNA also occurs in mammals. We have therefore initiated an immunohistochemical study of various rat tissues by using three antisera specific for Z-DNA, and the peroxidase–antiperoxidase technique12 for visualization of tissue-bound antibodies. Here we demonstrate that the nuclei of many, but not all, types of rat cells exhibit Z-DNA immunoreactivity, suggesting that Z-DNA may exist naturally in mammalian chromatin.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1

    Zimmerman, S. B. A. Rev. Biochem. 51, 395–427 (1982).

  2. 2

    Neidle, S. Nature 302, 574 (1983).

  3. 3

    Lafer, E. M., Möller, A., Nordheim, A., Stollar, B. D. & Rich, A. Proc. natn. Acad. Sci. U.S.A. 78, 3546–3550 (1981).

  4. 4

    Malfoy, B. & Leng, M. FEBS Lett. 132, 45–48 (1981).

  5. 5

    Pohl, F. M., Thomae, R. & DiCapua, E. Nature 300, 545–546 (1982).

  6. 6

    Möller, A. et al. J. biol. Chem. 257, 12081–12085 (1982).

  7. 7

    Nordheim, A. et al. Nature 294, 417–422 (1981).

  8. 8

    Lemeunier, F., Derbin, C., Malfoy, B., Leng, M. & Taillandier, E. Expl Cell Res. 141, 508–513 (1982).

  9. 9

    Leng, M. et al. Cold Spring Harb. Symp. quant. Biol. 47 (in the press).

  10. 10

    Lipps, H. J. et al. Cell 32, 435–441 (1983).

  11. 11

    Nordheim, A. et al. Proc. natn. Acad. Sci. U.S.A. 79, 7729–7733 (1982).

  12. 12

    Sternberger, L. A. Immunocytochemistry 2nd edn (Wiley, New York, 1979).

  13. 13

    Malfoy, B., Hartmann, B. & Leng, M. Nucleic Acids Res. 9, 5659–5669 (1981).

  14. 14

    Malfoy, B., Rousseau, N. & Leng, M. Biochemistry 21, 5463–5467 (1982).

  15. 15

    Lang, M. C., Malfoy, B., Freund, A. M., Daune, M. & Leng, M. EMBO J. 1, 1149–1153 (1982).

  16. 16

    Kuo, M. T. Expl Cell Res. 138, 221–229 (1982).

  17. 17

    Germond, J. E., Hirt, B., Oudet, P., Gross-Bellard, M. & Chambon, P. Proc. natn. Acad. Sci. U.S.A. 72, 1843–1847 (1975).

  18. 18

    Brahms, S. et al. J. molec. Biol. 162, 473–493 (1982).

  19. 19

    Nordheim, A. et al. Cell 31, 309–318 (1982).

  20. 20

    Arnott, S., Chandrasekaran, R., Birdsall, D. L., Leslie, A. G. W. & Ratliff, R. L. Nature 283, 743–745 (1990).

  21. 21

    Wells, R. D. et al. J. biol. Chem. 257, 10166–10171 (1982).

  22. 22

    Vorlíčkovà, M., Kypr, J., Štokrová, Š. & Šponar, J. Nucleic Acids Res. 10, 1071–1080 (1982).

  23. 23

    Zimmer, C., Tymen, S., Marck, C. & Guschauer, W. Nucleic Acids Res. 10, 1081–1091 (1982).

  24. 24

    Nishioka, Y. & Leder, P. J. biol. Chem. 255, 3691–3694 (1980).

  25. 25

    Hamada, H. & Kakunaga, T. Nature 298, 396–398 (1982).

  26. 26

    Hamada, H., Petrino, M. G. & Kakunaga, T. Proc. natn. Acad. Sci. U.S.A. 79, 6465–6469 (1982).

Download references

Author information

Rights and permissions

Reprints and Permissions

About this article

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.