Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Z-DNA immunoreactivity in rat tissues

A Corrigendum to this article was published on 01 August 1983

Abstract

Recently, it has been shown that natural and synthetic deoxynucleotide polymers can adopt a left-handed helical structure (termed Z-DNA) in appropriate conditions (see, for example, refs 1 and 2 and the references therein). In contrast to the more familiar right-handed B-DNA, Z-DNA is strongly immunogenic, and polyclonal and monoclonal antibodies against Z-DNA have been elicited3–6. By using such antibodies, immunoreactivity for Z-DNA has been detected in the polytene chromosomes of two dipteran species7–9, in the macronucleus of a ciliated protozoon10, and in certain plant nuclei (cited in ref. 11). In view of the possible importance of Z-DNA as a genomic regulatory signal7, it would be highly desirable to know whether Z-DNA also occurs in mammals. We have therefore initiated an immunohistochemical study of various rat tissues by using three antisera specific for Z-DNA, and the peroxidase–antiperoxidase technique12 for visualization of tissue-bound antibodies. Here we demonstrate that the nuclei of many, but not all, types of rat cells exhibit Z-DNA immunoreactivity, suggesting that Z-DNA may exist naturally in mammalian chromatin.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Zimmerman, S. B. A. Rev. Biochem. 51, 395–427 (1982).

    Article  CAS  Google Scholar 

  2. Neidle, S. Nature 302, 574 (1983).

    Article  CAS  ADS  PubMed  Google Scholar 

  3. Lafer, E. M., Möller, A., Nordheim, A., Stollar, B. D. & Rich, A. Proc. natn. Acad. Sci. U.S.A. 78, 3546–3550 (1981).

    Article  CAS  ADS  Google Scholar 

  4. Malfoy, B. & Leng, M. FEBS Lett. 132, 45–48 (1981).

    Article  CAS  PubMed  Google Scholar 

  5. Pohl, F. M., Thomae, R. & DiCapua, E. Nature 300, 545–546 (1982).

    Article  CAS  ADS  PubMed  Google Scholar 

  6. Möller, A. et al. J. biol. Chem. 257, 12081–12085 (1982).

    PubMed  Google Scholar 

  7. Nordheim, A. et al. Nature 294, 417–422 (1981).

    Article  CAS  ADS  PubMed  Google Scholar 

  8. Lemeunier, F., Derbin, C., Malfoy, B., Leng, M. & Taillandier, E. Expl Cell Res. 141, 508–513 (1982).

    Article  CAS  Google Scholar 

  9. Leng, M. et al. Cold Spring Harb. Symp. quant. Biol. 47 (in the press).

  10. Lipps, H. J. et al. Cell 32, 435–441 (1983).

    Article  CAS  PubMed  Google Scholar 

  11. Nordheim, A. et al. Proc. natn. Acad. Sci. U.S.A. 79, 7729–7733 (1982).

    Article  CAS  ADS  Google Scholar 

  12. Sternberger, L. A. Immunocytochemistry 2nd edn (Wiley, New York, 1979).

    Google Scholar 

  13. Malfoy, B., Hartmann, B. & Leng, M. Nucleic Acids Res. 9, 5659–5669 (1981).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Malfoy, B., Rousseau, N. & Leng, M. Biochemistry 21, 5463–5467 (1982).

    Article  CAS  PubMed  Google Scholar 

  15. Lang, M. C., Malfoy, B., Freund, A. M., Daune, M. & Leng, M. EMBO J. 1, 1149–1153 (1982).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Kuo, M. T. Expl Cell Res. 138, 221–229 (1982).

    Article  CAS  Google Scholar 

  17. Germond, J. E., Hirt, B., Oudet, P., Gross-Bellard, M. & Chambon, P. Proc. natn. Acad. Sci. U.S.A. 72, 1843–1847 (1975).

    Article  CAS  ADS  Google Scholar 

  18. Brahms, S. et al. J. molec. Biol. 162, 473–493 (1982).

    Article  CAS  PubMed  Google Scholar 

  19. Nordheim, A. et al. Cell 31, 309–318 (1982).

    Article  CAS  PubMed  Google Scholar 

  20. Arnott, S., Chandrasekaran, R., Birdsall, D. L., Leslie, A. G. W. & Ratliff, R. L. Nature 283, 743–745 (1990).

    Article  ADS  Google Scholar 

  21. Wells, R. D. et al. J. biol. Chem. 257, 10166–10171 (1982).

    CAS  PubMed  Google Scholar 

  22. Vorlíčkovà, M., Kypr, J., Štokrová, Š. & Šponar, J. Nucleic Acids Res. 10, 1071–1080 (1982).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Zimmer, C., Tymen, S., Marck, C. & Guschauer, W. Nucleic Acids Res. 10, 1081–1091 (1982).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Nishioka, Y. & Leder, P. J. biol. Chem. 255, 3691–3694 (1980).

    CAS  PubMed  Google Scholar 

  25. Hamada, H. & Kakunaga, T. Nature 298, 396–398 (1982).

    Article  CAS  ADS  PubMed  Google Scholar 

  26. Hamada, H., Petrino, M. G. & Kakunaga, T. Proc. natn. Acad. Sci. U.S.A. 79, 6465–6469 (1982).

    Article  CAS  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Morgenegg, G., Celio, M., Malfoy, B. et al. Z-DNA immunoreactivity in rat tissues. Nature 303, 540–543 (1983). https://doi.org/10.1038/303540a0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/303540a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing