Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

RASER-FISH: non-denaturing fluorescence in situ hybridization for preservation of three-dimensional interphase chromatin structure

Abstract

DNA fluorescence in situ hybridization (FISH) has been a central technique in advancing our understanding of how chromatin is organized within the nucleus. With the increasing resolution offered by super-resolution microscopy, the optimal maintenance of chromatin structure within the nucleus is essential for accuracy in measurements and interpretation of data. However, standard 3D-FISH requires potentially destructive heat denaturation in the presence of chaotropic agents such as formamide to allow access to the DNA strands for labeled FISH probes. To avoid the need to heat-denature, we developed Resolution After Single-strand Exonuclease Resection (RASER)-FISH, which uses exonuclease digestion to generate single-stranded target DNA for efficient probe binding over a 2 d process. Furthermore, RASER-FISH is easily combined with immunostaining of nuclear proteins or the detection of RNAs. Here, we provide detailed procedures for RASER-FISH in mammalian cultured cells to detect single loci, chromatin tracks and topologically associating domains with conventional and super-resolution 3D structured illumination microscopy. Moreover, we provide a validation and characterization of our method, demonstrating excellent preservation of chromatin structure and nuclear integrity, together with improved hybridization efficiency, compared with classic 3D-FISH protocols.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Comparison of prehybridization workflow for RASER-FISH with heat denaturation FISH techniques.
Fig. 2: Comparison of hybridization strategies.
Fig. 3: Comparison of chromatin structure and TAD shapes.
Fig. 4: RASER-FISH compared with heat-denaturation FISH.
Fig. 5: Workflow for RASER-FISH.
Fig. 6: RASER-FISH hybridization examples with inset magnifications.

Similar content being viewed by others

Data availability

Figures 2, 3 and 6 have associated raw image data plus one dataset. All raw data files are archived in Figshare: Fig. 2 at https://doi.org/10.6084/m9.figshare.16778899, Fig. 3 at https://doi.org/10.6084/m9.figshare.16778902 and Fig. 6 at https://doi.org/10.6084/m9.figshare.16755394. Source data are provided with this paper.

References

  1. Benabdallah, N. S. et al. Decreased enhancer–promoter proximity accompanying enhancer activation. Mol. Cell 76, 473–484 e477 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Cattoni, D. I. et al. Single-cell absolute contact probability detection reveals chromosomes are organized by multiple low-frequency yet specific interactions. Nat. Commun. 8, 1753 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Fabre, P. J. et al. Nanoscale spatial organization of the HoxD gene cluster in distinct transcriptional states. Proc. Natl Acad. Sci. USA 112, 13964–13969 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Giorgetti, L. et al. Predictive polymer modeling reveals coupled fluctuations in chromosome conformation and transcription. Cell 157, 950–963 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Nora, E. P. et al. Spatial partitioning of the regulatory landscape of the X-inactivation centre. Nature 485, 381–385 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. van de Corput, M. P. et al. Super-resolution imaging reveals three-dimensional folding dynamics of the beta-globin locus upon gene activation. J. Cell Sci. 125, 4630–4639 (2012).

    PubMed  Google Scholar 

  7. Boettiger, A. N. et al. Super-resolution imaging reveals distinct chromatin folding for different epigenetic states. Nature 529, 418–422 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Bintu, B. et al. Super-resolution chromatin tracing reveals domains and cooperative interactions in single cells. Science https://doi.org/10.1126/science.aau1783 (2018).

  9. Cardozo Gizzi, A. M. et al. Microscopy-based chromosome conformation capture enables simultaneous visualization of genome organization and transcription in intact organisms. Mol. Cell 74, 212–222.e215 (2019).

    Article  CAS  PubMed  Google Scholar 

  10. Mateo, L. J. et al. Visualizing DNA folding and RNA in embryos at single-cell resolution. Nature 568, 49–54 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Su, J.-H., Zheng, P., Kinrot, S. S., Bintu, B. & Zhuang, X. Genome-scale imaging of the 3D organization and transcriptional activity of chromatin. Cell 182, 1641–1659.e1626 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Takei, Y. et al. Integrated spatial genomics reveals global architecture of single nuclei. Nature 590, 344–350 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Markaki, Y. et al. The potential of 3D-FISH and super-resolution structured illumination microscopy for studies of 3D nuclear architecture: 3D structured illumination microscopy of defined chromosomal structures visualized by 3D (immuno)-FISH opens new perspectives for studies of nuclear architecture. Bioessays 34, 412–426 (2012).

    Article  PubMed  Google Scholar 

  14. Hausmann, M., Lee, J. H., Sievers, A., Krufczik, M. & Hildenbrand, G. COMBinatorial Oligonucleotide FISH (COMBO-FISH) with uniquely binding repetitive DNA probes. Methods Mol. Biol. 2175, 65–77 (2020).

    Article  CAS  PubMed  Google Scholar 

  15. Lee, J.-H. et al. COMBO-FISH: a versatile tool beyond standard FISH to study chromatin organization by fluorescence light microscopy. OBM Genet. https://doi.org/10.21926/obm.genet.1901064 (2019).

  16. Krufczik, M. et al. Combining low temperature fluorescence DNA-hybridization, immunostaining, and super-resolution localization microscopy for nano-structure analysis of ALU elements and their influence on chromatin structure. Int. J. Mol. Sci. https://doi.org/10.3390/ijms18051005 (2017).

  17. Deng, W., Shi, X., Tjian, R., Lionnet, T. & Singer, R. H. CASFISH: CRISPR/Cas9-mediated in situ labeling of genomic loci in fixed cells. Proc. Natl Acad. Sci. USA 112, 11870–11875 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Wang, Y. et al. Genome oligopaint via local denaturation fluorescence in situ hybridization. Mol. Cell 81, 1566–1577 e1568 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Bailey, S. M., Goodwin, E. H. & Cornforth, M. N. Strand-specific fluorescence in situ hybridization: the CO-FISH family. Cytogenet. Genome Res. 107, 14–17 (2004).

    Article  CAS  PubMed  Google Scholar 

  20. Goodwin, E. & Meyne, J. Strand-specific FISH reveals orientation of chromosome 18 alphoid DNA. Cytogenet. Cell Genet. 63, 126–127 (1993).

    Article  CAS  PubMed  Google Scholar 

  21. Rowley, M. J. & Corces, V. G. Organizational principles of 3D genome architecture. Nat. Rev. Genet. 19, 789–800 (2018).

    Article  CAS  PubMed  Google Scholar 

  22. Schoenfelder, S. & Fraser, P. Long-range enhancer–promoter contacts in gene expression control. Nat. Rev. Genet. 20, 437–455 (2019).

    Article  CAS  PubMed  Google Scholar 

  23. van Steensel, B. & Furlong, E. E. M. The role of transcription in shaping the spatial organization of the genome. Nat. Rev. Mol. Cell Biol. 20, 327–337 (2019).

    PubMed  PubMed Central  Google Scholar 

  24. Hua, P. et al. Defining genome architecture at base-pair resolution. Nature 595, 125–129 (2021).

    Article  CAS  PubMed  Google Scholar 

  25. Osterwalder, M. et al. Enhancer redundancy provides phenotypic robustness in mammalian development. Nature 554, 239–243 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Oudelaar, A. M. et al. Dynamics of the 4D genome during in vivo lineage specification and differentiation. Nat. Commun. 11, 2722 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Sanyal, A., Lajoie, B. R., Jain, G. & Dekker, J. The long-range interaction landscape of gene promoters. Nature 489, 109–113 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Nagano, T. et al. Single-cell Hi-C reveals cell-to-cell variability in chromosome structure. Nature 502, 59–64 (2013).

    Article  CAS  PubMed  Google Scholar 

  29. Stevens, T. J. et al. 3D structures of individual mammalian genomes studied by single-cell Hi-C. Nature 544, 59–64 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Dekker, J. Mapping the 3D genome: aiming for consilience. Nat. Rev. Mol. Cell Biol. 17, 741–742 (2016).

    Article  CAS  PubMed  Google Scholar 

  31. Falk, M. et al. Heterochromatin drives compartmentalization of inverted and conventional nuclei. Nature 570, 395–399 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Feodorova, Y., Falk, M., Mirny, L. A. & Solovei, I. Viewing nuclear architecture through the eyes of nocturnal mammals. Trends Cell Biol. 30, 276–289 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Finn, E. H. et al. Extensive heterogeneity and intrinsic variation in spatial genome organization. Cell 176, 1502–1515 e1510 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Nir, G. et al. Walking along chromosomes with super-resolution imaging, contact maps, and integrative modeling. PLoS Genet. 14, e1007872 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Szabo, Q. et al. TADs are 3D structural units of higher-order chromosome organization in Drosophila. Sci. Adv. 4, eaar8082 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Brown, J. M. et al. A tissue-specific self-interacting chromatin domain forms independently of enhancer–promoter interactions. Nat. Commun. 9, 3849 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Miron, E. et al. Chromatin arranges in chains of mesoscale domains with nanoscale functional topography independent of cohesin. Sci. Adv. https://doi.org/10.1126/sciadv.aba8811 (2020).

  38. Ochs, F. et al. Stabilization of chromatin topology safeguards genome integrity. Nature 574, 571–574 (2019).

    Article  CAS  PubMed  Google Scholar 

  39. Rhodes, J. D. P. et al. Cohesin disrupts polycomb-dependent chromosome interactions in embryonic stem cells. Cell Rep. 30, 820–835 e810 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Beckwith, K. et al. Visualization of loop extrusion by DNA nanoscale tracing in single human cells. Preprint at bioRxiv https://doi.org/10.1101/2021.04.12.439407 (2021).

  41. Weiland, Y., Lemmer, P. & Cremer, C. Combining FISH with localisation microscopy: super-resolution imaging of nuclear genome nanostructures. Chromosome Res. 19, 5–23 (2011).

    Article  CAS  PubMed  Google Scholar 

  42. Kapuscinski, J. & Szer, W. Interactions of 4′, 6-diamidine-2-phenylindole with synthetic polynucleotides. Nucleic Acids Res. 6, 3519–3534 (1979).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Krasin, F. & Hutchinson, F. Double-strand breaks from single photochemical events in DNA containing 5-bromouracil. Biophys. J. 24, 645–656 (1978).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Limoli, C. L. & Ward, J. F. A new method for introducing double-strand breaks into cellular DNA. Radiat. Res. 134, 160–169 (1993).

    Article  CAS  PubMed  Google Scholar 

  45. Weghorst, C. M., Henneman, J. R. & Ward, J. M. Dose response of hepatic and renal DNA synthetic rates to continuous exposure of bromodeoxyuridine (BrdU) via slow-release pellets or osmotic minipumps in male B6C3F1 mice. J. Histochem. Cytochem. 39, 177–184 (1991).

    Article  CAS  PubMed  Google Scholar 

  46. Hutchinson, F. The lesions produced by ultraviolet light in DNA containing 5-bromouracil. Q. Rev. Biophys. 6, 201–246 (1973).

    Article  CAS  PubMed  Google Scholar 

  47. Kraus, F. et al. Quantitative 3D structured illumination microscopy of nuclear structures. Nat. Protoc. 12, 1011–1028 (2017).

    Article  CAS  PubMed  Google Scholar 

  48. Schmidt, T. L. et al. Scalable amplification of strand subsets from chip-synthesized oligonucleotide libraries. Nat. Commun. 6, 8634 (2015).

    Article  CAS  PubMed  Google Scholar 

  49. Beliveau, B. J. et al. Versatile design and synthesis platform for visualizing genomes with Oligopaint FISH probes. Proc. Natl Acad. Sci. USA 109, 21301–21306 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Boettiger, A. & Murphy, S. Advances in chromatin imaging at kilobase-scale resolution. Trends Genet. 36, 273–287 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Jez, M. et al. The hazards of DAPI photoconversion: effects of dye, mounting media and fixative, and how to minimize the problem. Histochem. Cell Biol. 139, 195–204 (2013).

    Article  CAS  PubMed  Google Scholar 

  52. Brown, J. M. & Buckle, V. J. Detection of nascent RNA transcripts by fluorescence in situ hybridization. Methods Mol. Biol. 659, 33–50 (2010).

    Article  CAS  PubMed  Google Scholar 

  53. Boyle, S., Rodesch, M. J., Halvensleben, H. A., Jeddeloh, J. A. & Bickmore, W. A. Fluorescence in situ hybridization with high-complexity repeat-free oligonucleotide probes generated by massively parallel synthesis. Chromosome Res. 19, 901–909 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Brown, J. M. et al. Association between active genes occurs at nuclear speckles and is modulated by chromatin environment. J. Cell Biol. 182, 1083–1097 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank C. Lagerholm for extensive imaging support and D. Higgs for long-term support during the development of this technique. We thank R. Klose, J. and C. Lukas, F. Ochs, D. Higgs and J. Hughes for cells and images prepared during collaborations with them. We thank T. Brown and A. El-Sagheer for development and oversight of the oligonucleotide probe generation, and E. Heard for BAC RP24-217l10. Work in the Buckle laboratory was supported by MRC grants MC_UU_00016/1 and MR/N00969X/1, the latter in collaboration with J. Hughes, and by BBSRC grant BB/L01811X held in collaboration with T. Brown (Department of Physical Chemistry, Oxford University) and further supported by the Wolfson Imaging Centre Oxford funded by the Wolfson Foundation 18272, joint MRC/BBSRC/EPSRC MR/K015777X/1, Wellcome Trust Multi-User Equipment 104924/Z/14/Z. 3D-SIM imaging was performed at the Micron Oxford Advanced Bioimaging Unit funded by a Wellcome Trust Strategic Award 091911 and 107457/Z/15/Z. L.S. further acknowledges support by the EU Horizon 2020 Research and Innovation Program under the Marie Sklodowska-Curie grant agreement no. 766181. E.P. was sponsored by the International Internship Program (IIP) at Princeton University.

Author information

Authors and Affiliations

Authors

Contributions

J.M.B. and V.J.B. developed the protocol and hybridized, imaged and analyzed RASER-FISH preparations, S.D.O. synthesized, hybridized and analyzed the oligonucleotide probe preparations, L.S. and E.P. hybridized, imaged and analyzed preparations using structured illumination miroscopy, and J.M.B., L.S. and V.J.B. wrote the paper.

Corresponding author

Correspondence to Veronica J. Buckle.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Peer review

Peer review information

Nature Protocols thanks Marion Cremer, Michael Hausmann and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Key references using this protocol

Brown, J. et al. Nat. Commun. 9, 3849 (2018): https://doi.org/10.1038/s41467-018-06248-4

Ochs, F. et al. Nature 574, 571–574 (2019): https://doi.org/10.1038/s41586-019-1659-4

Miron, E. et al. Sci. Adv. 6, eaba8811 (2020): https://doi.org/10.1126/sciadv.aba8811

Supplementary information

Supplementary Information

Supplementary Methods 1 and 2 and Supplementary References.

Reporting Summary

Source data

Source Data Fig. 2

Statistical source data.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brown, J.M., De Ornellas, S., Parisi, E. et al. RASER-FISH: non-denaturing fluorescence in situ hybridization for preservation of three-dimensional interphase chromatin structure. Nat Protoc 17, 1306–1331 (2022). https://doi.org/10.1038/s41596-022-00685-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41596-022-00685-8

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing