Letter | Published:

Tyrosine hydroxylase activation in depolarized dopaminergic terminals—involvement of Ca2+ -dependent phosphorylation

Naturevolume 302pages830832 (1983) | Download Citation



Tyrosine hydroxylase (tyrosine 3-monoxygenase, EC, TH) catalyses the rate limiting step of catecholamine biosynthesis, In vitro, TH from central dopaminergic1–4 as well as from central5,6 and peripheral6,7 noradrenergic neurones can be activated by a cyclic AMP-dependent phosphorylation process and several authors7–9 have proposed that this process can be responsible for the in vivo activation of TH resulting from the electrical stimulation of these neurones. However, this is unlikely to be the case for TH in central dopaminergic neurones because depolarization produces an enzyme activation which is additive with that due to the cyclic AMP-dependent phosphorylation process10–12. In the case of tryptophan hydroxylase in central serotoninergic neurones, recent evidence indicates that a Ca2+-dependent instead of a cyclic AMP-dependent phosphorylation process is responsible for the increased enzyme activity triggered by depolarization13. This finding led us to investigate whether a Ca2+-dependent phosphorylation process also accounts for the activation of TH inside depolarized dopaminergic terminals. We found that soluble TH from the rat striatum could be activated by a Ca2+-dependent process in optimal conditions for producing the phosphorylation of proteins. This activation corresponded exactly to that resulting from the incubation of striatal slices in K+-enriched medium and indeed TH activity from depolarized dopaminergic terminals could not be further stimulated by Ca2+-dependent phosphorylating conditions. In contrast, in situ TH activation by cyclic AMP-dependent phosphorylation (triggered by dibutyryl cyclic AMP or forskolin) did not prevent subsequent stimulation by Ca2+-dependent phosphorylation. These findings suggest that TH activation in depolarized dopaminergic terminals involves a Ca2+-dependent phosphorylation process similar to that controlling tryptophan hydroxylase activity in serotoninergic neurones.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.


  1. 1

    Lovenberg, W., Bruckwick, E. A. & Hanbauer, I. Proc. natn. Acad. Sci. U.S.A. 72, 2955–2958 (1975).

  2. 2

    Joh, T. H., Park, D. H. & Reis, D. J. Proc. natn. Acad. Sci. U.S.A. 75, 4744–4748 (1978).

  3. 3

    Vrana, K. E., Allhiser, C. L. & Roskoski, R. Jr, J. Neurochem. 36, 92–100 (1981).

  4. 4

    Pollock, R. J., Kapatos, G. & Kaufman, S. J. Neurochem. 37, 855–860 (1981).

  5. 5

    Acheson, A. L., Kapatos, G. & Zigmond, M. J. Life Sci. 28, 1407–1420 (1981).

  6. 6

    Weiner, N. Aromatic Amino Acid Hydroxylases and Mental Disease (ed. Youdim, M. B. H.) 141–190 (Wiley, Chichester, 1979).

  7. 7

    Weiner, N., Lee, F. L., Meligeni, J. & Tank, A. W. Function and Regulation of Monoamine Enzymes: Basic and Clinical Aspects (eds Usdin, E., Weiner, N. & Youdim, M. B. H.) 3–14 (Macmillan, London, 1981).

  8. 8

    Murrin, L. C., Morgenroth, V. H. III & Roth, R. H. Molec. Pharmac. 12, 1070–1081 (1976).

  9. 9

    Roth, R. H. & Salzman, P. M. Structure and Function of Monoamine Enzymes (eds Usdin, E., Weiner, N. & Youdim, M. B, H.) 149–168 (Dekker, New York, 1977).

  10. 10

    Goldstein, M., Bronaugh, R. L., Ebstein, B. & Roberge, C. Brain Res. 109, 563–574 (1976).

  11. 11

    Bustos, G. & Roth, R. H. Biochem. Pharmac. 28, 3026–3028 (1979).

  12. 12

    Simon, J. R. & Roth, R. H. Molec. Pharmac. 16, 224–233 (1979).

  13. 13

    Hamon, M., Bourgoin, S., Artaud, F. & Glowinski, J. J. Neurochem. 33, 1031–1042 (1979).

  14. 14

    Seamon, K. B., Padgett, W. & Daly, J. W. Proc. natn. Acad. Sci. U.S.A. 78, 3363–3367 (1981).

  15. 15

    Yamauchi, T. & Fujisawa, H. J. biol. Chem. 254, 6408–6413 (1979).

  16. 16

    Kakiuchi, S., Rail, T. W. & Mcllwain, H. J. Neurochem. 16, 485–491 (1969).

  17. 17

    Hamon, M., Bourgoin, S., Artaud, F. & Héry, F. J. Neurochem. 28, 811–818 (1977).

  18. 18

    Levin, R. M. & Weiss, B. Molec. Pharmac. 12, 581–589 (1976).

  19. 19

    Raese, J. D., Makk, G. & Barchas, J. D. Function and Regulation of Monoamine Enzymes: Basic and Clinical Aspects (eds Usdin, E., Weiner, N. & Youdim, M. B. H.) 105–114 (Macmillan, London, 1981).

  20. 20

    Yamauchi, T. & Fujisawa, H. Biochem. biophys. Res. Commun. 100, 807–813 (1981).

Download references

Author information


  1. Groupe NB, Inserm U. 114, Collège de France, 11 Place Marcelin Berthelot, 75231, Paris, Cedex 5, France

    • S. El Mestikawy
    • , J. Glowinski
    •  & M. Hamon


  1. Search for S. El Mestikawy in:

  2. Search for J. Glowinski in:

  3. Search for M. Hamon in:

About this article

Publication history



Issue Date



Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.