Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Structure of the serine chemoreceptor in Escherichia coli

Abstract

Many biological processes depend on the function of proteins that detect changes in a cell's environment and transmit the information to the cytoplasm, for example, peptide hormone receptors1. In Escherichia coli this class of proteins is exemplified by the sensory transducers (also called signalling proteins or methyl-accepting chemotaxis proteins) which have a central role in mediating chemotactic behaviour2,3. The sensory transducers are the products of four genes: tsr, tar, tap and trg. Each transducer detects changes in the environmental concentration of one or a very few attractants: Tsr, serine; Tar, aspartate and maltose; Tap, unknown; and Trg, ribose and galactose. Tsr and Tar act directly as chemoreceptors for the amino acid attractants4,5 and signal changes in their degree of occupancy to the flagellar apparatus. Detection of these changes in occupancy is made possible as the transducers are methylated at multiple glutamate residues6–9 such that their level of methylation reflects the most recent chemoeffector concentration. Biochemical10,11 and genetic12,13 information concerning the serine transducer protein has been accumulating rapidly but little is known about the structure of the molecule. We present here the nucleotide sequence of the tsr gene of E. coli; the amino acid sequence derived from it suggests that the Tsr transducer protein has a relatively simple transmembrane structure that may place limits on the mechanisms available for the transmission of sensory information into the cell.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Rodbell, M. Nature 284, 17–22 (1980).

    Article  CAS  ADS  PubMed  Google Scholar 

  2. Springer, M. S., Goy, M. F. & Adler, J. Nature 264, 577–579 (1979).

    Google Scholar 

  3. Boyd, A. & Simon, M. A. Rev. Physiol. 44, 501–517 (1982).

    Article  CAS  Google Scholar 

  4. Hedblom, M. L. & Adler, J. J. Bact. 144, 1048–1060 (1980).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Wang, E. A. & Koshland, D. E. Proc. natn. Acad. Sci. U.S.A. 77, 7157–7161 (1980).

    Article  CAS  ADS  Google Scholar 

  6. Boyd, A. & Simon, M. J. Bact. 143, 809–815 (1980).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Chelsky, D. & Dahlquist, F. W. Proc. natn. Acad. Sci. U.S.A. 77, 2434–2438 (1980).

    Article  CAS  ADS  Google Scholar 

  8. DeFranco, A. L. & Koshland, D. E. Proc. natn. Acad. Sci. U.S.A. 77, 2439–2443 (1980).

    Article  ADS  Google Scholar 

  9. Engstrom, P. & Hazelbauer, G. L. Cell 20, 165–171 (1980).

    Article  CAS  PubMed  Google Scholar 

  10. Kehry, M. R. & Dahlquist, F. W. J. biol. Chem. 257, 10378–10386 (1982).

    CAS  PubMed  Google Scholar 

  11. Kehry, M. R. & Dahlquist, F. W. Cell 29, 761–772 (1982).

    Article  CAS  PubMed  Google Scholar 

  12. Boyd, A., Krikos, A. & Simon, M. Cell 26, 333–343 (1981).

    Article  CAS  PubMed  Google Scholar 

  13. Parkinson, J. S., Slocum, M. K., Callahan, A. M., Sherris, D. & Houts, S. E. in Mobility and Recognition in Cell Biology (eds Sund, H. & Veeger, C.) (de Gruyter, New York, in the press).

  14. Shine, J. & Dalgarno, J. Proc. natn. Acad. Sci. U.S.A. 71, 7342–7346 (1974).

    Article  Google Scholar 

  15. Platt, T. Cell 24, 10–23 (1981).

    Article  CAS  PubMed  Google Scholar 

  16. Segrest, J. P. & Feldman, R. J. J. molec. Biol 87, 853–858 (1974).

    Article  CAS  PubMed  Google Scholar 

  17. Emr, S. D., Hall, M. N. & Silhavy, T. J. J. Cell Biol. 86, 701–711 (1980).

    Article  CAS  PubMed  Google Scholar 

  18. Dunn, R. et al. Proc. natn. Acad. Sci. U.S.A. 78, 6744–6748 (1981).

    Article  CAS  ADS  Google Scholar 

  19. Buchel, D. E., Gronenborn, B. & Muller-Hill, B. Nature 283, 541–545 (1980).

    Article  CAS  ADS  PubMed  Google Scholar 

  20. Higgins, C. F. et al. Nature 298, 723–727 (1982).

    Article  CAS  ADS  PubMed  Google Scholar 

  21. Young, I. G., Rogers, B. L., Campbell, H. D., Jawarowski, A. & Dhaw, D. C. Eur. J. Biochem. 116, 165–170 (1981).

    Article  CAS  PubMed  Google Scholar 

  22. Engelman, D. N., Henderson, R., McLachlan, A. D. & Wallace, B. A. Proc. natn. Acad. Sci. U.S.A. 77, 2023–2027 (1980).

    Article  CAS  ADS  Google Scholar 

  23. Kreil, G. A. Rev. Biochem. 50, 317–348 (1981).

    Article  CAS  Google Scholar 

  24. Kehry, M. R., Dahlquist, F. W. & Bond, M. W. in Mobility and Recognition in Cell Biology (eds Sund, H. & Veeger, C.) (de Gruyter, New York, in the press).

  25. Sherris, D. & Parkinson, J. S. Proc. natn. Acad. Sci. U.S.A. 78, 6051–6055 (1981).

    Article  CAS  ADS  Google Scholar 

  26. Rollins, C. & Dahlquist, F. W. Cell 25, 333–340 (1981).

    Article  CAS  PubMed  Google Scholar 

  27. Chelsky, D. & Dahlquist, F. W. Biochemistry 19, 4633–4639 (1980).

    Article  CAS  PubMed  Google Scholar 

  28. Auerswald, E.-A., Ludwig, G. & Schaller, H. Cold Spring Harb. Symp. quant. Biol. 45, 107–113 (1981).

    Article  CAS  PubMed  Google Scholar 

  29. Smith, H. O. & Birnstiel, M. Nucleic Acids Res. 3, 2387–2398 (1981).

    Article  Google Scholar 

  30. Maxam, A. & Gilbert, W. Meth. Enzym. 65, 499–560 (1980).

    Article  CAS  PubMed  Google Scholar 

  31. Sanger, F., Nicklen, S. & Coulson, A. R. Proc. natn. Acad. Sci. U.S.A. 74, 5463–5467 (1977).

    Article  CAS  ADS  Google Scholar 

  32. Messing, J., Crea, R. & Seeburg, P. H. Nucleic Acids Res. 9, 309–321 (1981).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Staden, R. Nucleic Acids Res. 8, 3673–3694 (1980).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Boyd, A., Kendall, K. & Simon, M. Structure of the serine chemoreceptor in Escherichia coli. Nature 301, 623–626 (1983). https://doi.org/10.1038/301623a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/301623a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing