Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Ca2+ ions can affect intracellular pH in mammalian cardiac muscle

Abstract

Although intracellular pH (pHi) has important effects on both the mechanical and electrical properties of cardiac muscle1–3, the control of pHi in the heart is still poorly understood. One important determinant of pHi appears to be the transmembrane Na+ gradient4,5. It has therefore been suggested that Na+–H+ exchange assists in the control of pHi in heart as has been proposed for other excitable cells6–8. However, pHi and the intracellular Ca2+ concentration ([Ca2+]i) are interdependent in a variety of tissues9–11 and it has been shown recently that pHi can affect [Ca2+]i in cardiac muscle5,12. As [Ca2+]i in cardiac muscle is also strongly influenced by the transmembrane Na+ gradient5 it is possible that the apparent Na+ -dependence of pHi is secondary to changes in [Ca2+]i. Previous work in cardiac muscle has not been able to separate the effects of Na+–H+ exchange and [Ca2+]i on pHi (refs 4, 5). Here we demonstrate in cardiac muscle that an increase in [Ca2+]i produces an intracellular acidification which cannot be ascribed to Na+–H+ exchange.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Gaskell, W. H. J. Physiol., Lond. 3, 48–75 (1880).

    Article  CAS  Google Scholar 

  2. Poole-Wilson, P. A. J. molec. cell. Cardiol. 10, 511–526 (1978).

    Article  CAS  Google Scholar 

  3. Marrannes, R., de Hemptinne, A. & Leusen, I. Pflügers Arch. ges. Physiol. 389, 199–209 (1981).

    Article  CAS  Google Scholar 

  4. Deitmer, J. W. & Ellis, D. J. Physiol., Lond. 304, 471–488 (1980).

    Article  CAS  Google Scholar 

  5. Bers, D. M. & Ellis, D. Pflügers Arch. ges. Physiol. 393, 171–178 (1982).

    Article  CAS  Google Scholar 

  6. Thomas, R. C. J. Physiol., Lond. 273, 317–338 (1977).

    Article  ADS  CAS  Google Scholar 

  7. Aickin, C. C. & Thomas, R. C. J. Physiol., Lond. 273, 295–316 (1977).

    Article  CAS  Google Scholar 

  8. Roos, A. & Boron, W. F. Physiol. Rev. 61, 296–434 (1981).

    Article  CAS  Google Scholar 

  9. Meech, R. W. & Thomas, R. C. J. Physiol., Lond. 298, 111–129 (1980).

    Article  CAS  Google Scholar 

  10. Baker, P. F. & Honerjager, P. Nature 273, 160–161 (1978).

    Article  ADS  CAS  Google Scholar 

  11. Lea, T. J. & Ashley, C. C. Nature 275, 236–238 (1978).

    Article  ADS  CAS  Google Scholar 

  12. Hess, P. & Weingart, R. J. Physiol., Lond. 307, 60P (1980).

  13. Baker, P. F., Blaustein, M. P., Hodgkin, A. L. & Steinhardt, R. A. J. Physiol., Lond. 200, 295–316 (1969).

    Google Scholar 

  14. Glitsch, H. G., Reuter, H. & Scholz, H. J. Physiol., Lond. 209, 25–43 (1970).

    Article  CAS  Google Scholar 

  15. Sheu, S-S. & Fozzard, H. J. gen. Physiol. 80, 325–351 (1982).

    Article  CAS  Google Scholar 

  16. Kass, R. S., Lederer, W. J., Tsien, R. W. & Weingart, R. J. Physiol., Lond. 281, 187–208 (1978).

    Article  CAS  Google Scholar 

  17. Eisner, D. A. & Lederer, W. J. J. Physiol., Lond. 294, 255–277 (1979).

    Article  CAS  Google Scholar 

  18. Marban, E., Rink, T. J., Tsien, R. W. & Tsien, R. Y. Nature 286, 845–850 (1980).

    Article  ADS  CAS  Google Scholar 

  19. Coray, A., Fry, C. H., Hess, P., McGuigan, J. S. & Weingart, R. J. Physiol., Lond. 305, 60–61P (1980).

    Google Scholar 

  20. Ellis, D. & Thomas, R. C. J. Physiol., Lond. 262, 755–771 (1976).

    Article  CAS  Google Scholar 

  21. Katz, A. M. Physiol. Rev. 50, 63–158 (1970).

    Article  CAS  Google Scholar 

  22. Lea, T. J. & Ashley, C. C. J. Membrane Biol. 61, 115–125 (1981).

    Article  CAS  Google Scholar 

  23. Carafoli, E. & Crompton, M. Curr. Topics Membrane Transp. 10, 151–214 (1978).

    Article  CAS  Google Scholar 

  24. Mobley, B. A. & Page, E. J. Physiol., Lond. 220, 547–563 (1972).

    Article  CAS  Google Scholar 

  25. Fabiato, A. & Fabiato, F. J. Physiol., Lond. 276, 233–255 (1978).

    Article  CAS  Google Scholar 

  26. Dahl, G. & Isenberg, G. J. Membrane Biol. 53, 63–75 (1980).

    Article  CAS  Google Scholar 

  27. Reber, W. R. & Weingart, R. J. Physiol., Lond. 328, 87–104 (1982).

    Article  CAS  Google Scholar 

  28. Vaughan-Jones, R. D. Phil. Trans. R. Soc. 299, 537–548 (1982).

    Article  CAS  Google Scholar 

  29. Thomas, R. C. Ion-sensitive Intracellular Microelectrodes (Academic, London, 1978).

    Google Scholar 

  30. Eisner, D. A., Lederer, W. J. & Vaughan-Jones, R. D. J. Physiol., Lond. 317, 163–187 (1981).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vaughan-Jones, R., Lederer, W. & Eisner, D. Ca2+ ions can affect intracellular pH in mammalian cardiac muscle. Nature 301, 522–524 (1983). https://doi.org/10.1038/301522a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/301522a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing