Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Optical afterglow of the γ-ray burst of 14 December 1997

Abstract

The very recent detection of the faint host galaxy of one γ-ray burst1,2,3,4 and the determination of a cosmological redshift for another5, demonstrates that these events are the most luminous phenomena in the Universe, emitting more energy in radiation than a supernova over just a few seconds. The source of this energy is still unknown, but may become clear through studies of the counterparts at longer wavelengths. Here we report the detection of an optical counterpart to a γ-ray burst (GRB971214) that occurred on 14 December 1997. It faded rapidly over a two-week period, just like the previous two optical transients1,6,7,8,9,10,11 which dispels any doubt that the three events are the optical afterglows of γ-ray bursts. The 14 December optical transient is the faintest of the three, and also is much redder than the other two. This reddening probably arises because of scattering by interstellar dust along the line of sight, which is presumably present in the denser regions of the host galaxy, where stars form. This suggests that the burst's progenitor did not stray too far from the point of its birth, which, regardless of the nature of the source, appears to be in a region of dense gas.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: MDM Observatory images of the optical counterpart of GRB971214.
Figure 2: Photometry of GRB971214 taken from Table 1.
Figure 3: Calculated spectrum of the optical afterglow.

Similar content being viewed by others

References

  1. Groot, P. J. et al. IAU Circ.No. 6588 (1997).

    Google Scholar 

  2. Metzger, M. R. et al. IAU Circ.No. 6588 (1997).

    Google Scholar 

  3. van Paradijs, J. et al. Transient optical emission from the error box of the γ-ray burst of 28 February 1997. Nature 386, 686–689 (1997).

    Article  ADS  CAS  Google Scholar 

  4. Sahu, K. C. et al. The optical counterpart to the γ-ray burst GRB970228 observed using the Hubble Space Telescope. Nature 387, 476–478 (1997).

    Article  ADS  CAS  Google Scholar 

  5. Metzger, M. R. et al. Spectral constraints on the redshift of the optical counterpart to the γ-ray burst of 8 May 1997. Nature 387, 878–880 (1997).

    Article  ADS  CAS  Google Scholar 

  6. Groot, P. J. et al. IAU Circ.No. 6584 (1997).

    Google Scholar 

  7. Bond, H. E. et al. IAU Circ.No. 6654 (1997).

    Google Scholar 

  8. Djorgovski, S. G. et al. The optical counterpart to the γ-ray burst GRB970508. Nature 387, 876–878 (1997).

    Article  ADS  CAS  Google Scholar 

  9. Sahu, K. C. et al. Observations of GRB 970228 and GRB 970508 and the neutron star merger model. Astrophys. J. 489, L127–L131 (1997).

    Article  ADS  Google Scholar 

  10. Pian, E. et al. Hubble Space Telescope imaging of the optical transient associated with GRB 970508. Astrophys. J. 492, L103–L106 (1998).

    Article  ADS  CAS  Google Scholar 

  11. Pederson, H. et al. Evidence for diverse optical emission from gamma-ray burst sources. Astrophys. J. 496, 311–315 (1998).

    Article  ADS  Google Scholar 

  12. Heise, J. et al. IAU Circ.No. 6787 (1997).

    Google Scholar 

  13. Halpern, J., Thorstensen, J., Helfand, D. & Costa, E. IAU Circ.No. 6788 (1997).

    Google Scholar 

  14. Diercks, A. et al. IAU Circ.No. 6791 (1997).

    Google Scholar 

  15. Castander, F. J. et al. IAU Circ.No. 6791 (1997).

    Google Scholar 

  16. Rhoads, J. IAU Circ.No. 6793 (1997).

    Google Scholar 

  17. Tanvir, N., Wyse, R., Gilmore, G. & Corson, C. IAU Circ.No. 6796 (1997).

    Google Scholar 

  18. Landolt, A. U. UBVRI photometric standard stars in the magnitude range 11.5 < V < 16.0 around the celestial equator. Astron. J. 104, 340–371 (1992).

    Article  ADS  Google Scholar 

  19. Costa, E. et al. Discovery of an X-ray afterglow associated with the γ-ray burst of 28 February 1997. Nature 387, 783–785 (1997).

    Article  ADS  CAS  Google Scholar 

  20. Antonelli, L. A. et al. IAU Circ.No. 6792 (1997).

    Google Scholar 

  21. Piro, L. et al. Evidence for late-time outburst of the X-ray afterglow of GB970508 from BeppoSAX. Astron. Astrophys. 331, L41–L44 (1998).

    ADS  Google Scholar 

  22. Sokolov, V. V. et al. in Proc. 4th Gamma-Ray Burst Symp.(eds Meegan, C., Preece, R. & Koshut, T.) (AIP, New York, (1997).

    Google Scholar 

  23. Livio, M. et al. in Proc. 4th Gamma-Ray Burst Symp.(eds Meegan, C., Preece, R. & Koshut, T.) (AIP, New York, (1997).

    Google Scholar 

  24. Galama, T. et al. The decay of the optical emission from the γ-ray burst GRB970228. Nature 387, 479–481 (1997).

    Article  ADS  CAS  Google Scholar 

  25. Bessel, M. S. UBVRI photometry. II—The Cousins VRI system, its temperature and absolute flux calibration, and relevance for two-dimensional photometry. Publ. Astron. Soc. Pacif. 91, 589–607 (1979).

    Article  ADS  Google Scholar 

  26. Piro, L. From the gamma-ray burst to its afterglow with BeppoSAX. Bull. Am. Astron. Soc. 29, 1303 (1997).

    ADS  Google Scholar 

  27. Frontera, F. et al. Spectral properties of the prompt x-ray emission and afterglow from the gamma-ray burst of 1997 February 28. Astrophys. J. 493, L67–L70 (1998).

    Article  ADS  Google Scholar 

  28. Mészarós, P. & Rees, M. J. Optical and long-wavelength afterglow from gamma-ray bursts. Astrophys. J. 476, 232–237 (1997).

    Article  ADS  Google Scholar 

  29. Wijers, R. A. M., Rees, M. J. & Mészarós, P. Shocked by GRB 970228: the afterglow of a cosmological fireball. Mont. R. Astron. Soc. 288, L51–L56 (1997).

    Article  ADS  Google Scholar 

  30. Savage, B. D. & Mathis, J. S. Observed properties of interstellar dust. Annu. Rev. Astron. Astrophys. 17, 73–111 (1979).

    Article  ADS  CAS  Google Scholar 

  31. Reichart, D. E. The redshift of GRB 970508. Astrophys. J. 495, L99–L102 (1998).

    Article  ADS  Google Scholar 

  32. Kulkarni, S. R. et al. GCN Message No. 27(1998).

  33. Kulkarni, S. R., Adelberger, K. L., Bloom, J. S., Kundic, T. & Lubin, L. GCN Message No. 29(1998).

  34. Narayan, R., Paczyński, B. & Piran, T. Gamma-ray bursts as the death throes of massive binary stars. Astrophys. J. 395, L83–L86 (1992).

    Article  ADS  CAS  Google Scholar 

  35. Paczyński, B. Are gamma-ray bursts in star forming regions? Astrophys. J. 494, L45–L48 (1998).

    Article  ADS  Google Scholar 

  36. Monet, D. et al. USNO-SA1.0(US Naval Observatory, Washington DC, (1996).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. P. Halpern.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Halpern, J., Thorstensen, J., Helfand, D. et al. Optical afterglow of the γ-ray burst of 14 December 1997. Nature 393, 41–43 (1998). https://doi.org/10.1038/29935

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/29935

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing