Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Modifier role of internal H+ in activating the Na+–H+ exchanger in renal microvillus membrane vesicles

Abstract

The intracellular pH in animal cells is generally maintained at a higher level than would be expected if H+ were passively distributed across the plasma membrane1. In a wide variety of cells including sea urchin eggs2, skeletal muscle3, renal and intestinal epithelial cells4–6, and neuroblastoma cells7, plasma membrane Na+–H+ exchangers mediate the uphill extrusion of H+ coupled to, and thus energized by, the downhill entry of Na+. Plasma membrane vesicles isolated from the luminal (microvillus, brush border) surface of renal proximal tubular cells possess a Na+–H+ exchanger4,5 that seems to be representative of the Na+–H+ exchangers found in other tissues. For example, the renal microvillus membrane Na+–H+ exchanger, like other N+–H+ exchangers, mediates electroneutral cation exchange4,5, is sensitive to inhibition by the diuretic drug amiloride5,8, and has affinity for Li+ in addition to Na+ and H+ (refs 5, 9). Here we have examined the effect of internal H+ on the activity of the Na+–H+ exchanger in renal microvillus membrane vesicles. Our results suggest that internal H+, independent of its role as a substrate for exchange with external Na+, has an important modifier role as an allosteric activator of the Na+–H+ exchanger. Allosteric behaviour with respect to internal H+ is a property that would enhance the ability of plasma membrane Na+–H+ exchangers to extrude intracellular acid loads and thereby contribute to the regulation of intracellular pH.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Roos, A. & Boron, W. F. Physiol. Rev. 61, 296–434 (1981).

    Article  CAS  Google Scholar 

  2. Johnson, J. D., Epel, D. & Paul, M. Nature 262, 661–664 (1976).

    Article  ADS  CAS  Google Scholar 

  3. Aicken, C. C. & Thomas, R. C. J. Physiol., Lond. 273, 295–316 (1977).

    Article  Google Scholar 

  4. Murer, H., Hopfer, U. & Kinne, R. Biochem. J. 154, 597–604 (1976).

    Article  CAS  Google Scholar 

  5. Kinsella, J. L. & Aronson, P. S. Am. J. Physiol. 238, F461–F469 (1980).

    CAS  PubMed  Google Scholar 

  6. Rindler, M. J. & Saier, M. H. Jr J. biol. Chem. 256, 10820–10825 (1981).

    CAS  PubMed  Google Scholar 

  7. Moolenaar, W. H., Boonstra, J., van der Saag, P. T. & de Laat, S. W. J. biol. Chem. 256, 12883–12887 (1981).

    CAS  PubMed  Google Scholar 

  8. Kinsella, J. L. & Aronson, P. S. Am. J. Physiol. 241, F374–F379 (1981).

    Article  CAS  Google Scholar 

  9. Kinsella, J. L. & Aronson, P. S. Am. J. Physiol. 241, C220–C226 (1981).

    Article  CAS  Google Scholar 

  10. Aronson, P. S. J. Membrane Biol. 42, 81–98 (1978).

    Article  CAS  Google Scholar 

  11. Booth, A. G. & Kenny, A. J. Biochem. J. 142, 575–581 (1974).

    Article  CAS  Google Scholar 

  12. Aronson, P. S. & Kinsella, J. L. Fedn Proc. 40, 2213–2217 (1981).

    CAS  Google Scholar 

  13. Haase, W., Schäfer, A., Murer, H. & Kinne, R. Biochem. J. 172, 57–82 (1978).

    Article  CAS  Google Scholar 

  14. Cuthbert, A. W. & Shum, W. K. Proc. R. Soc. B189, 543–575 (1975).

    ADS  CAS  Google Scholar 

  15. Kinsella, J. L. & Aronson, P. S. Biochim. biophys. Acta 689, 161–164 (1982).

    Article  CAS  Google Scholar 

  16. Aronson, P. S. Am. J. Physiol. 240, F1–F11 (1981).

    Article  CAS  Google Scholar 

  17. Kregonow, F. M. A. Rev. Physiol. 43, 493–505 (1981).

    Article  Google Scholar 

  18. Benos, D. J. Am. J. Physiol. 242, C131–C145 (1982).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aronson, P., Nee, J. & Suhm, M. Modifier role of internal H+ in activating the Na+–H+ exchanger in renal microvillus membrane vesicles. Nature 299, 161–163 (1982). https://doi.org/10.1038/299161a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/299161a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing