Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Effect of an allozyme polymorphism on regulation of cell volume

Abstract

Biochemical differences have been described among allozymes1–4, but the physiological consequences (that is, physiological phenotypes) of such differences have only rarely been demonstrated5–7. Such a relationship is necessary both to the argument that natural selection maintains allozymic diversity in natural populations and for understanding biochemical mechanisms of adaptation8. We report here a genotype-dependent difference in the rate of cellular free amino acid accumulation during adjustment to hyperosmotic conditions in the mussel Mytilus edulis. The product of the Lap locus in M. edulis is the lysosomal enzyme aminopeptidase-I (AM-I; E.C.3.4.11.-) which hydrolyses oligopeptides to their constituent amino acids9. Total AM-I activity is positively correlated with salinity; a 120% increase in salinity increases AM-I activity twofold10–13. Adjustment to hyperosmotic stress in osmoconforming marine bivalves, including M. edulis, involves rapid accumulation of cellular free amino acids14,15. The biochemical properties of AM-I, and its activation by salinity changes, suggest that it is important for providing cellular free amino acid pools during adjustment to hyperosmotic stress11. We show that individuals carrying the allele for high catalytic efficiency (kcat) accumulated cellular amino acids more rapidly than other genotypes. The difference in accumulation rate was also demonstrated by an interruption of hyperosmotic adjustment, which resulted in genotype-dependent rates of amino acid excretion. These results demonstrate the role of AM-I in the physiological processes that regulate cell volume. Thus, differing catalytic properties of allozymes are manifested as phenotypic differences at the physiological level and provide a mechanism for the known selective mortality of mussels in natural populations7.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Place, A. R. & Powers, D. A. Proc. natn. Acad. Sci. U.S.A. 76, 2354–2358 (1979).

    Article  ADS  CAS  Google Scholar 

  2. Koehn, R. K. & Siebenaller, J. F. Biochem. Genet. 19, 1143–1162 (1981).

    Article  CAS  Google Scholar 

  3. McDonald, J. F., Anderson, S. M. & Santos, M. Genetics 95, 1013–1022 (1980).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Hoffmann, R. J. Biochem. Genet. 19, 129–144 (1981).

    Article  CAS  Google Scholar 

  5. Powers, D. A., Greaney, G. S. & Place, A. R. Nature 277, 240–241 (1979).

    Article  ADS  CAS  Google Scholar 

  6. Cavener, D. R. & Clegg, M. T. Proc. natn. Acad. Sci. U.S.A. 78, 4444–4447 (1981).

    Article  ADS  CAS  Google Scholar 

  7. Koehn, R. K., Newell, R. I. E. & Immermann, F. W. Proc. natn. Acad. Sci. U.S.A. 77, 5385–5389 (1980).

    Article  ADS  CAS  Google Scholar 

  8. Koehn, R. K. in Ecological Genetics: The Interface (ed. Brussard, P.) 51–72 (Springer, New York, 1978).

    Book  Google Scholar 

  9. Young, J. P. W., Koehn, R. K. & Arnheim, N. Biochem. Genet. 17, 305–323 (1979).

    Article  CAS  Google Scholar 

  10. Moore, M. N., Koehn, R. K. & Bayne, B. L. J. exp. Zool. 214, 239–249 (1980).

    Article  CAS  Google Scholar 

  11. Koehn, R. K., Bayne, B. L., Moore, M. N. & Siebenaller, J. S. Biol. J. Linn. Soc. Lond. 14, 319–334 (1980).

    Article  Google Scholar 

  12. Bayne, B. L., Moore, M. N. & Koehn, R. K. Mar. Biol. Lett. 2, 193–204 (1981).

    CAS  Google Scholar 

  13. Koehn, R. K. & Immermann, F. W. Biochem. Genet. 19, 1115–1142 (1981).

    Article  CAS  Google Scholar 

  14. Bishop, S. H. in Estuarine Processes (ed. Wiley, M.) 414–431 (Academic, New York, 1976).

    Book  Google Scholar 

  15. Baginski, R. M. & Pierce, S. K. J. exp. Zool. 203, 419–428 (1978).

    Article  CAS  Google Scholar 

  16. Pierce, S. K. & Greenberg, M. J. J. exp. Zool. 57, 681–692 (1972).

    Google Scholar 

  17. Graff, G. L. A., Brouet-Yager, M. & Kleiner, H. Comp. Biochem. Physiol. 49, 381–386 (1964).

    Google Scholar 

  18. North, B. B. Limnol. Oceanogr. 20, 20–27 (1975).

    Article  ADS  CAS  Google Scholar 

  19. Matheson, A. T. & Tattrie, B. L. Can. J. Biochem. 42, 95–103 (1964).

    Article  CAS  Google Scholar 

  20. Koehn, R. K., Milkman, R. & Mitton, J. B. Evolution 30, 2–32 (1976).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hilbish, T., Deaton, L. & Koehn, R. Effect of an allozyme polymorphism on regulation of cell volume. Nature 298, 688–689 (1982). https://doi.org/10.1038/298688a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/298688a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing