Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Evolutionary selection for perfect hairpin structures in viral DNAs

Abstract

Several recent discoveries1 have pointed to nucleic acid secondary structure as an additional dimension in gene expression2. Further evidence for the formation of hairpins in RNA is the fact that cruciforms exist in negatively supercoiled DNAs3–5. As potential binding sites for proteins, these structures have been proposed to play a part in the regulation of various crucial reactions, such as replication6,7, transcription8, or RNA processing9. As any random nucleotide sequence can self-anneal with an approximately 50% chance of forming some Watson-Crick-type base pairs10, it is difficult to assess which, if any, of all possible hairpin-like secondary structures may be biologically relevant. We have computed the expected distribution of perfectly base-paired structures as a function of loop size and stem length and compared it with the distribution observed in the complete genome of eight DNA viruses from animals, plants and bacteria. We report here that hairpins having six or more consecutive base pairs in the stem are not distributed randomly along the genome, occur much more often than chance would predict, and are particularly over-represented in regions that appear to have regulatory significance. The average loop size was found to decrease with an increase in stem length. These results support our previous hypothesis that these structures are biologically relevant11.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Cantor, C. R. Cell 25, 293–295 (1981).

    Article  CAS  Google Scholar 

  2. Wells, R. D. et al. Prog. Nucleic Acid Res. molec. Biol. 24, 167–267 (1980).

    Article  CAS  Google Scholar 

  3. Panayotatos, N. & Wells, R. D. Nature 289, 466–470 (1981).

    Article  ADS  CAS  Google Scholar 

  4. Hassanoot, C. A. G. et al. Nucleic Acids Res. 8, 169–181 (1980).

    Article  Google Scholar 

  5. Lilley, D. M. J. Nucleic Acids Res. 9, 1271–1289 (1981).

    Article  ADS  CAS  Google Scholar 

  6. Sims, J. et al. J. biol. Chem. 254, 12615–12628 (1979).

    CAS  PubMed  Google Scholar 

  7. Suggs, S. V. & Ray, D. S. Cold Spring Harb. Symp. quant. Biol. 43, 379–388 (1978).

    Article  Google Scholar 

  8. Rosenberg, M. et al. Nature 272, 414–423 (1978).

    Article  ADS  CAS  Google Scholar 

  9. Guaneros, G. et al. 7th Int. Biophys. Congr. 3rd Pan-Am. Biochem. Congr., Mexico City (Abstr. TH-0-42, 1981).

    Google Scholar 

  10. Fitch, W. M. J. molec. Evolut. 3, 279–291 (1974).

    Article  ADS  CAS  Google Scholar 

  11. Müller, U. R. & Fitch, W. M. in Bacteriophage Assembly (ed. DuBow, M. S.) 285–297 (Liss, New York, 1981).

    Google Scholar 

  12. Sanger, F. et al. J. molec. Biol. 125, 225–246 (1978).

    Article  CAS  Google Scholar 

  13. Godson, G. N. et al. Nature 276, 236–247 (1978).

    Article  ADS  CAS  Google Scholar 

  14. Beck, E. et al. Nucleic Acids Res. 5, 4495–4503 (1978).

    Article  CAS  Google Scholar 

  15. Reddy, V. B. et al. Science 200, 494–502 (1978).

    Article  ADS  CAS  Google Scholar 

  16. Deininger, P. L. et al. Nucleic Acids Res. 8, 855–860 (1980).

    CAS  Google Scholar 

  17. Meyer, T. F. & Geider, K. J. biol Chem. 254, 12642–12646 (1979).

    CAS  PubMed  Google Scholar 

  18. Weisbeek, P. et al. Eur. J. Biochem. 114, 501–507 (1981).

    Article  CAS  Google Scholar 

  19. Schaller, H. et al. in The Single-Stranded DNA Phages (eds Denhardt, D. T., Dressier, D. & Ray, D. S.) 139–163 (Cold Spring Harbor Laboratory, New York, 1978).

    Google Scholar 

  20. Galibert, F. et al. Nature 281, 646–650 (1979).

    Article  ADS  CAS  Google Scholar 

  21. Franck, A. et al. Cell 21, 285–294 (1980).

    Article  CAS  Google Scholar 

  22. Charnay, P. et al. Nucleic Acids Res. 7, 335–346 (1979).

    Article  CAS  Google Scholar 

  23. Pasek, M. et al. Nature 282, 575–579 (1979).

    Article  ADS  CAS  Google Scholar 

  24. Covey, S. N. & Hull, R. Virology 111, 463–474 (1981).

    Article  CAS  Google Scholar 

  25. Simons, G. F. M. et al. in Bacteriophage Assembly (ed. DuBow, M. S.) 401–411 (Liss, New York, 1981).

    Google Scholar 

  26. Sutcliffe, J. G. Cold Spring Harb. Symp. quant. Biol. 43, 77–90 (1978).

    Article  Google Scholar 

  27. Tinoco, J. et al. Nature new Biol. 246, 40–41 (1973).

    Article  CAS  Google Scholar 

  28. Van Heuverswyn, H. & Fiers, W. Eur. J. Biochem. 100, 51–60 (1979).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Müller, U., Fitch, W. Evolutionary selection for perfect hairpin structures in viral DNAs. Nature 298, 582–585 (1982). https://doi.org/10.1038/298582a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/298582a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing